Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, Alexander Rush
AbstractRecent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers.@inproceedings{wolf-etal-2020-transformers, title = "Transformers: State-of-the-Art Natural Language Processing", author = "Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien and Delangue, Clement and Moi, Anthony and Cistac, Pierric and Rault, Tim and Louf, Remi and Funtowicz, Morgan and Davison, Joe and Shleifer, Sam and von Platen, Patrick and Ma, Clara and Jernite, Yacine and Plu, Julien and Xu, Canwen and Le Scao, Teven and Gugger, Sylvain and Drame, Mariama and Lhoest, Quentin and Rush, Alexander", editor = "Liu, Qun and Schlangen, David", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = oct, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.emnlp-demos.6/", doi = "10.18653/v1/2020.emnlp-demos.6", pages = "38--45", abstract = "Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at \url{https://github.com/huggingface/transformers}." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="wolf-etal-2020-transformers"> <titleInfo> <title>Transformers: State-of-the-Art Natural Language Processing</title> </titleInfo> <name type="personal"> <namePart type="given">Thomas</namePart> <namePart type="family">Wolf</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lysandre</namePart> <namePart type="family">Debut</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Victor</namePart> <namePart type="family">Sanh</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Julien</namePart> <namePart type="family">Chaumond</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Clement</namePart> <namePart type="family">Delangue</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Anthony</namePart> <namePart type="family">Moi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pierric</namePart> <namePart type="family">Cistac</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tim</namePart> <namePart type="family">Rault</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Remi</namePart> <namePart type="family">Louf</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Morgan</namePart> <namePart type="family">Funtowicz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joe</namePart> <namePart type="family">Davison</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sam</namePart> <namePart type="family">Shleifer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrick</namePart> <namePart type="family">von Platen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Clara</namePart> <namePart type="family">Ma</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yacine</namePart> <namePart type="family">Jernite</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Julien</namePart> <namePart type="family">Plu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Canwen</namePart> <namePart type="family">Xu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Teven</namePart> <namePart type="family">Le Scao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sylvain</namePart> <namePart type="family">Gugger</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariama</namePart> <namePart type="family">Drame</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Quentin</namePart> <namePart type="family">Lhoest</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Rush</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title> </titleInfo> <name type="personal"> <namePart type="given">Qun</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="family">Schlangen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers.</abstract> <identifier type="citekey">wolf-etal-2020-transformers</identifier> <identifier type="doi">10.18653/v1/2020.emnlp-demos.6</identifier> <location> <url>https://aclanthology.org/2020.emnlp-demos.6/</url> </location> <part> <date>2020-10</date> <extent unit="page"> <start>38</start> <end>45</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Transformers: State-of-the-Art Natural Language Processing %A Wolf, Thomas %A Debut, Lysandre %A Sanh, Victor %A Chaumond, Julien %A Delangue, Clement %A Moi, Anthony %A Cistac, Pierric %A Rault, Tim %A Louf, Remi %A Funtowicz, Morgan %A Davison, Joe %A Shleifer, Sam %A von Platen, Patrick %A Ma, Clara %A Jernite, Yacine %A Plu, Julien %A Xu, Canwen %A Le Scao, Teven %A Gugger, Sylvain %A Drame, Mariama %A Lhoest, Quentin %A Rush, Alexander %Y Liu, Qun %Y Schlangen, David %S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations %D 2020 %8 October %I Association for Computational Linguistics %C Online %F wolf-etal-2020-transformers %X Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers. %R 10.18653/v1/2020.emnlp-demos.6 %U https://aclanthology.org/2020.emnlp-demos.6/ %U https://doi.org/10.18653/v1/2020.emnlp-demos.6 %P 38-45Markdown (Informal)
[Transformers: State-of-the-Art Natural Language Processing](https://aclanthology.org/2020.emnlp-demos.6/) (Wolf et al., EMNLP 2020)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4