A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://webassembly.github.io/js-promise-integration/js-api/ below:

WebAssembly JavaScript Interface

This API provides a way to access WebAssembly [WEBASSEMBLY] through a bridge to explicitly construct modules from JavaScript [ECMASCRIPT].

1. Sample API Usage

This section is non-normative.

Given demo.wat (encoded to demo.wasm):

(module
    (import "js" "import1" (func $i1))
    (import "js" "import2" (func $i2))
    (func $main (call $i1))
    (start $main)
    (func (export "f") (call $i2))
)

and the following JavaScript, run in a browser:

var importObj = {js: {
    import1: () => console.log("hello,"),
    import2: () => console.log("world!")
}};
fetch('demo.wasm').then(response =>
    response.arrayBuffer()
).then(buffer =>
    WebAssembly.instantiate(buffer, importObj)
).then(({module, instance}) =>
    instance.exports.f()
);
2. Notation

This specification depends on the Infra Standard. [INFRA]

The WebAssembly sequence type is equivalent to the list type defined there; values of one are treated as values of the other transparently.

3. Internal storage 3.1. Interaction of the WebAssembly Store with JavaScript

Note: WebAssembly semantics are defined in terms of an abstract store, representing the state of the WebAssembly abstract machine. WebAssembly operations take a store and return an updated store.

Each agent has an associated store. When a new agent is created, its associated store is set to the result of store_init().

Note: In this specification, no WebAssembly-related objects, memory or addresses can be shared among agents in an agent cluster. In a future version of WebAssembly, this may change.

Elements of the WebAssembly store may be identified with JavaScript values. In particular, each WebAssembly memory instance with a corresponding Memory object is identified with a JavaScript Data Block; modifications to this Data Block are identified to updating the agent’s store to a store which reflects those changes, and vice versa.

3.2. WebAssembly JS Object Caches

Note: There are several WebAssembly objects that may have a corresponding JavaScript object. The correspondence is stored in a per-agent mapping from WebAssembly addresses to JavaScript objects. This mapping is used to ensure that, for a given agent, there exists at most one JavaScript object for a particular WebAssembly address. However, this property does not hold for shared objects.

Each agent is associated with the following ordered maps:

3.3. Execution Context Status Map

Note: The Execution Context Status Map is used to enforce certain correspondences between JavaScript execution and WebAssembly execution; particularly in relation to the JavaScript Promise Integration API.

Each agent is associated with the following ordered map:

4. The WebAssembly Namespace
dictionary WebAssemblyInstantiatedSource {
    required Module module;
    required Instance instance;
};

[Exposed=*]
namespace WebAssembly {
    boolean validate(BufferSource bytes);
    Promise<Module> compile(BufferSource bytes);

    Promise<WebAssemblyInstantiatedSource> instantiate(
        BufferSource bytes, optional object importObject);

    Promise<Instance> instantiate(
        Module moduleObject, optional object importObject);

    readonly attribute Tag JSTag;
};

The

validate(bytes)

method, when invoked, performs the following steps:

  1. Let stableBytes be a copy of the bytes held by the buffer bytes.

  2. Compile stableBytes as a WebAssembly module and store the results as module.

  3. If module is error, return false.

  4. Return true.

A Module object represents a single WebAssembly module. Each Module object has the following internal slots:

To

construct a WebAssembly module object

from a module

module

and source bytes

bytes

, perform the following steps:

  1. Let moduleObject be a new Module object.

  2. Set moduleObject.[[Module]] to module.

  3. Set moduleObject.[[Bytes]] to bytes.

  4. Return moduleObject.

To

read the imports

from a WebAssembly module

module

from imports object

importObject

, perform the following steps:

  1. If module.imports is not empty, and importObject is undefined, throw a TypeError exception.

  2. Let imports be « ».

  3. For each (moduleName, componentName, externtype) of module_imports(module),

    1. Let o be ? Get(importObject, moduleName).

    2. If Type(o) is not Object, throw a TypeError exception.

    3. Let v be ? Get(o, componentName).

    4. If externtype is of the form func functype,

      1. If IsCallable(v) is true,

        1. If v has a [[FunctionAddress]] internal slot, and therefore is an Exported Function,

          1. Let funcaddr be the value of v’s [[FunctionAddress]] internal slot.

        2. Otherwise,

          1. Create a host function from v and functype, and let funcaddr be the result.

      2. Otherwise, if v has a [[WrappedFunction]] internal slot,

        1. Let func be the value of v’s [[WrappedFunction]] internal slot.

        2. Assert: IsCallable(func) is true.

        3. create a suspending function from func and functype, and let funcaddr be the result.

      3. Otherwise, throw a LinkError exception.

      4. Let index be the number of external functions in imports. This value index is known as the index of the host function funcaddr.

      5. Let externfunc be the external value func funcaddr.

      6. Append externfunc to imports.

    5. If externtype is of the form global mut valtype,

      1. If v implements Global,

        1. Let globaladdr be v.[[Global]].

      2. Otherwise,

        1. If valtype is i64 and Type(v) is not BigInt,

          1. Throw a LinkError exception.

        2. If valtype is one of i32, f32 or f64 and Type(v) is not Number,

          1. Throw a LinkError exception.

        3. If valtype is v128,

          1. Throw a LinkError exception.

        4. Let value be ToWebAssemblyValue(v, valtype). If this operation throws a TypeError, catch it, and throw a LinkError exception.

        5. Let store be the surrounding agent's associated store.

        6. Let (store, globaladdr) be global_alloc(store, const valtype, value).

        7. Set the surrounding agent's associated store to store.

      3. Let externglobal be global globaladdr.

      4. Append externglobal to imports.

    6. If externtype is of the form mem memtype,

      1. If v does not implement Memory, throw a LinkError exception.

      2. Let externmem be the external value mem v.[[Memory]].

      3. Append externmem to imports.

    7. If externtype is of the form table tabletype,

      1. If v does not implement Table, throw a LinkError exception.

      2. Let tableaddr be v.[[Table]].

      3. Let externtable be the external value table tableaddr.

      4. Append externtable to imports.

    8. If externtype is of the form tag attribute functype,

      1. Assert: attribute is exception.

      2. If v does not implement Tag, throw a LinkError exception.

      3. Let tagaddr be v.[[Address]].

      4. Let externtag be the external value tag tagaddr.

      5. Append externtag to imports.

  4. Return imports.

Note: This algorithm only verifies the right kind of JavaScript values are passed. The verification of WebAssembly type requirements is deferred to the "instantiate the core of a WebAssembly module" algorithm.

To

create an exports object

from a WebAssembly module

module

and instance

instance

, perform the following steps:

  1. Let exportsObject be ! OrdinaryObjectCreate(null).

  2. For each (name, externtype) of module_exports(module),

    1. Let externval be instance_export(instance, name).

    2. Assert: externval is not error.

    3. If externtype is of the form func functype,

      1. Assert: externval is of the form func funcaddr.

      2. Let func funcaddr be externval.

      3. Let func be the result of creating a new Exported Function from funcaddr.

      4. Let value be func.

    4. If externtype is of the form global mut globaltype,

      1. Assert: externval is of the form global globaladdr.

      2. Let global globaladdr be externval.

      3. Let global be a new Global object created from globaladdr.

      4. Let value be global.

    5. If externtype is of the form mem memtype,

      1. Assert: externval is of the form mem memaddr.

      2. Let mem memaddr be externval.

      3. Let memory be a new Memory object created from memaddr.

      4. Let value be memory.

    6. If externtype is of the form table tabletype,

      1. Assert: externval is of the form table tableaddr.

      2. Let table tableaddr be externval.

      3. Let table be a new Table object created from tableaddr.

      4. Let value be table.

    7. If externtype is of the form tag attribute functype,

      1. Assert: attribute is exception.

      2. Assert: externval is of the form tag tagaddr.

      3. Let tag tagaddr be externval.

      4. Let tag be a new Tag object created from tagaddr.

      5. Let value be tag.

    8. Let status be ! CreateDataProperty(exportsObject, name, value).

    9. Assert: status is true.

    Note: the validity and uniqueness checks performed during WebAssembly module validation ensure that each property name is valid and no properties are defined twice.

  3. Perform ! SetIntegrityLevel(exportsObject, "frozen").

  4. Return exportsObject.

To

initialize an instance object instanceObject

from a WebAssembly module

module

and instance

instance

, perform the following steps:

  1. Create an exports object from module and instance and let exportsObject be the result.

  2. Set instanceObject.[[Instance]] to instance.

  3. Set instanceObject.[[Exports]] to exportsObject.

To

instantiate the core of a WebAssembly module

from a module

module

and imports

imports

, perform the following steps:

  1. Let store be the surrounding agent's associated store.

  2. Let result be module_instantiate(store, module, imports).

  3. If result is error, throw an appropriate exception type:

  4. Let (store, instance) be result.

  5. Set the surrounding agent's associated store to store.

  6. Return instance.

To

asynchronously instantiate a WebAssembly module

from a

Module moduleObject

and imports

importObject

, perform the following steps:

  1. Let promise be a new promise.

  2. Let module be moduleObject.[[Module]].

  3. Read the imports of module with imports importObject, and let imports be the result. If this operation throws an exception, catch it, reject promise with the exception, and return promise.

  4. Run the following steps in parallel:

    1. Queue a task to perform the following steps: Note: Implementation-specific work may be performed here.

      1. Instantiate the core of a WebAssembly module module with imports, and let instance be the result. If this throws an exception, catch it, reject promise with the exception, and terminate these substeps.

      2. Let instanceObject be a new Instance.

      3. Initialize instanceObject from module and instance. If this throws an exception, catch it, reject promise with the exception, and terminate these substeps.

      4. Resolve promise with instanceObject.

  5. Return promise.

Note: A follow-on streaming API is documented in the WebAssembly Web API.

The getter of the JSTag attribute of the WebAssembly Namespace, when invoked, performs the following steps:

  1. Let JSTagAddr be the result of getting the JavaScript exception tag.

  2. Let JSTagObject be the result of creating a Tag object from JSTagAddr.

  3. Return JSTagObject.

4.1. Modules
enum ImportExportKind {
  "function",
  "table",
  "memory",
  "global",
  "tag"
};

dictionary ModuleExportDescriptor {
  required USVString name;
  required ImportExportKind kind;
  // Note: Other fields such as signature may be added in the future.
};

dictionary ModuleImportDescriptor {
  required USVString module;
  required USVString name;
  required ImportExportKind kind;
};

[LegacyNamespace=WebAssembly, Exposed=*]
interface Module {
  constructor(BufferSource bytes);
  static sequence<ModuleExportDescriptor> exports(Module moduleObject);
  static sequence<ModuleImportDescriptor> imports(Module moduleObject);
  static sequence<ArrayBuffer> customSections(Module moduleObject, DOMString sectionName);
};

The

string value of the extern type type

is

The

customSections(moduleObject, sectionName)

method, when invoked, performs the following steps:

  1. Let bytes be moduleObject.[[Bytes]].

  2. Let customSections be « ».

  3. For each custom section customSection of bytes, interpreted according to the module grammar,

    1. Let name be the name of customSection, decoded as UTF-8.

    2. Assert: name is not failure (moduleObject.[[Module]] is valid).

    3. If name equals sectionName as string values,

      1. Append a new ArrayBuffer containing a copy of the bytes in bytes for the range matched by this customsec production to customSections.

  4. Return customSections.

The

Module(bytes)

constructor, when invoked, performs the following steps:

  1. Let stableBytes be a copy of the bytes held by the buffer bytes.

  2. Compile the WebAssembly module stableBytes and store the result as module.

  3. If module is error, throw a CompileError exception.

  4. Set this.[[Module]] to module.

  5. Set this.[[Bytes]] to stableBytes.

Note: Some implementations enforce a size limitation on bytes. Use of this API is discouraged, in favor of asynchronous APIs.

4.2. Instances
[LegacyNamespace=WebAssembly, Exposed=*]
interface Instance {
  constructor(Module module, optional object importObject);
  readonly attribute object exports;
};

The

Instance(module, importObject)

constructor, when invoked, runs the following steps:

  1. Let module be module.[[Module]].

  2. Read the imports of module with imports importObject, and let imports be the result.

  3. Instantiate the core of a WebAssembly module module with imports, and let instance be the result.

  4. Initialize this from module and instance.

Note: The use of this synchronous API is discouraged, as some implementations sometimes do long-running compilation work when instantiating.

The getter of the

exports

attribute of

Instance

returns

this

.[[Exports]].

4.3. Memories
dictionary MemoryDescriptor {
  required [EnforceRange] unsigned long initial;
  [EnforceRange] unsigned long maximum;
};

[LegacyNamespace=WebAssembly, Exposed=*]
interface Memory {
  constructor(MemoryDescriptor descriptor);
  unsigned long grow([EnforceRange] unsigned long delta);
  ArrayBuffer toFixedLengthBuffer();
  ArrayBuffer toResizableBuffer();
  readonly attribute ArrayBuffer buffer;
};

A Memory object represents a single memory instance which can be simultaneously referenced by multiple Instance objects. Each Memory object has the following internal slots:

To

create a fixed length memory buffer

from a

memory address memaddr

, perform the following steps:

  1. Let block be a Data Block which is identified with the underlying memory of memaddr.

  2. Let buffer be a new ArrayBuffer with the internal slots [[ArrayBufferData]], [[ArrayBufferByteLength]], and [[ArrayBufferDetachKey]].

  3. Set buffer.[[ArrayBufferData]] to block.

  4. Set buffer.[[ArrayBufferByteLength]] to the length of block.

  5. Set buffer.[[ArrayBufferDetachKey]] to "WebAssembly.Memory".

  6. Return buffer.

To

create a resizable memory buffer

from a

memory address memaddr

and a

maxsize

, perform the following steps:

  1. Let block be a Data Block which is identified with the underlying memory of memaddr.

  2. Let length be the length of block.

  3. If maxsize > (65536 × 65536),

    1. Throw a RangeError exception.

  4. Let buffer be a new ArrayBuffer with the internal slots [[ArrayBufferData]], [[ArrayBufferByteLength]], [[ArrayBufferMaxByteLength]], and [[ArrayBufferDetachKey]].

  5. Set buffer.[[ArrayBufferData]] to block.

  6. Set buffer.[[ArrayBufferByteLength]] to length.

  7. Set buffer.[[ArrayBufferMaxByteLength]] is maxsize.

  8. Set buffer.[[ArrayBufferDetachKey]] to "WebAssembly.Memory".

  9. Return buffer.

The

Memory(descriptor)

constructor, when invoked, performs the following steps:

  1. Let initial be descriptor["initial"].

  2. If descriptor["maximum"] exists, let maximum be descriptor["maximum"]; otherwise, let maximum be empty.

  3. If maximum is not empty and maximum < initial, throw a RangeError exception.

  4. Let memtype be { min initial, max maximum }.

  5. Let store be the surrounding agent's associated store.

  6. Let (store, memaddr) be mem_alloc(store, memtype). If allocation fails, throw a RangeError exception.

  7. Set the surrounding agent's associated store to store.

  8. Initialize this from memaddr.

The

grow(delta)

method, when invoked, performs the following steps:

  1. Let memaddr be this.[[Memory]].

  2. Return the result of growing the memory buffer associated with memaddr by delta.

Immediately after a WebAssembly memory.grow instruction executes, perform the following steps:

The

toFixedLengthBuffer()

method, when invoked, performs the following steps:

  1. Let buffer be this.[[BufferObject]].

  2. If IsFixedLengthArrayBuffer(buffer) is true, return buffer.

  3. Let memaddr be this.[[Memory]].

  4. Let fixedBuffer be the result of creating a fixed length memory buffer from memaddr.

  5. Perform ! DetachArrayBuffer(buffer, "WebAssembly.Memory").

  6. Set this.[[BufferObject]] to fixedBuffer.

  7. Return fixedBuffer.

The

toResizableBuffer()

method, when invoked, performs the following steps:

  1. Let buffer be this.[[BufferObject]].

  2. If IsFixedLengthArrayBuffer(buffer) is false, return buffer.

  3. Let memaddr be this.[[Memory]].

  4. Let store be the surrounding agent's associated store.

  5. Let memtype be mem_type(store, memaddr).

  6. If memtype has a max,

    1. Let maxsize be the max value in memtype.

  7. Otherwise,

    1. Let maxsize be 65536 × 65536.

  8. Let resizableBuffer be the result of creating a resizable memory buffer from memaddr and maxsize.

  9. Perform ! DetachArrayBuffer(buffer, "WebAssembly.Memory").

  10. Set this.[[BufferObject]] to resizableBuffer.

  11. Return resizableBuffer.

ArrayBuffer objects returned by a Memory object must have a size that is a multiple of a WebAssembly page size (the constant 65536). For this reason HostResizeArrayBuffer is redefined as follows.

The abstract operation HostResizeArrayBuffer takes arguments buffer (an ArrayBuffer) and newLength. It performs the following steps when called.

  1. If buffer.[[ArrayBufferDetachKey]] is "WebAssembly.Memory",

    1. Let map be the surrounding agent's associated Memory object cache.

    2. Assert: buffer is the [[BufferObject]] of exactly one value in map.

    3. For each memaddr → mem in map,

      1. If SameValue(mem.[[BufferObject]], buffer) is true,

        1. Assert: buffer.[[ArrayBufferByteLength]] modulo 65536 is 0.

        2. Let lengthDelta be newLength - buffer.[[ArrayBufferByteLength]].

        3. If lengthDelta < 0 or lengthDelta modulo 65536 is not 0,

          1. Throw a RangeError exception.

        4. Let delta be lengthDelta ÷ 65536.

        5. Grow the memory buffer associated with memaddr by delta.

    4. Return handled .

  2. Otherwise, return unhandled .

The getter of the

buffer

attribute of

Memory

returns

this

.[[BufferObject]].

4.4. Tables
enum TableKind {
  "externref",
  "anyfunc",
  // Note: More values may be added in future iterations,
  // e.g., typed function references, typed GC references
};

dictionary TableDescriptor {
  required TableKind element;
  required [EnforceRange] unsigned long initial;
  [EnforceRange] unsigned long maximum;
};

[LegacyNamespace=WebAssembly, Exposed=*]
interface Table {
  constructor(TableDescriptor descriptor, optional any value);
  unsigned long grow([EnforceRange] unsigned long delta, optional any value);
  any get([EnforceRange] unsigned long index);
  undefined set([EnforceRange] unsigned long index, optional any value);
  readonly attribute unsigned long length;
};

A Table object represents a single table instance which can be simultaneously referenced by multiple Instance objects. Each Table object has a [[Table]] internal slot, which is a table address.

The

Table(descriptor, value)

constructor, when invoked, performs the following steps:

  1. Let elementType be ToValueType(descriptor["element"]).

  2. If elementType is not a reftype,

    1. Throw a TypeError exception.

  3. Let initial be descriptor["initial"].

  4. If descriptor["maximum"] exists, let maximum be descriptor["maximum"]; otherwise, let maximum be empty.

  5. If maximum is not empty and maximum < initial, throw a RangeError exception.

  6. If value is missing,

    1. Let ref be DefaultValue(elementType).

    2. Assert: ref is not error.

  7. Otherwise,

    1. Let ref be ? ToWebAssemblyValue(value, elementType).

  8. Let type be the table type {min initial, max maximum} elementType.

  9. Let store be the surrounding agent's associated store.

  10. Let (store, tableaddr) be table_alloc(store, type, ref).

  11. Set the surrounding agent's associated store to store.

  12. Initialize this from tableaddr.

The

grow(delta, value)

method, when invoked, performs the following steps:

  1. Let tableaddr be this.[[Table]].

  2. Let store be the surrounding agent's associated store.

  3. Let initialSize be table_size(store, tableaddr).

  4. Let (limits, elementType) be table_type(tableaddr).

  5. If value is missing,

    1. Let ref be DefaultValue(elementType).

    2. If ref is error, throw a TypeError exception.

  6. Otherwise,

    1. Let ref be ? ToWebAssemblyValue(value, elementType).

  7. Let result be table_grow(store, tableaddr, delta, ref).

  8. If result is error, throw a RangeError exception.

    Note: The above exception can happen due to either insufficient memory or an invalid size parameter.

  9. Set the surrounding agent's associated store to result.

  10. Return initialSize.

The

set(index, value)

method, when invoked, performs the following steps:

  1. Let tableaddr be this.[[Table]].

  2. Let store be the surrounding agent's associated store.

  3. Let (limits, elementType) be table_type(store, tableaddr).

  4. If elementType is exnref,

    1. Throw a TypeError exception.

  5. If value is missing,

    1. Let ref be DefaultValue(elementType).

    2. If ref is error, throw a TypeError exception.

  6. Otherwise,

    1. Let ref be ? ToWebAssemblyValue(value, elementType).

  7. Let store be the surrounding agent's associated store.

  8. Let store be table_write(store, tableaddr, index, ref).

  9. If store is error, throw a RangeError exception.

  10. Set the surrounding agent's associated store to store.

4.5. Globals
enum ValueType {
  "i32",
  "i64",
  "f32",
  "f64",
  "v128",
  "externref",
  "anyfunc",
};

Note: this type may be extended with additional cases in future versions of WebAssembly.

dictionary GlobalDescriptor {
  required ValueType value;
  boolean mutable = false;
};

[LegacyNamespace=WebAssembly, Exposed=*]
interface Global {
  constructor(GlobalDescriptor descriptor, optional any v);
  any valueOf();
  attribute any value;
};

A Global object represents a single global instance which can be simultaneously referenced by multiple Instance objects. Each Global object has one internal slot:

The algorithm

ToValueType

(

s

) performs the following steps:

  1. If s equals "i32", return i32.

  2. If s equals "i64", return i64.

  3. If s equals "f32", return f32.

  4. If s equals "f64", return f64.

  5. If s equals "v128", return v128.

  6. If s equals "anyfunc", return funcref.

  7. If s equals "externref", return externref.

  8. Assert: This step is not reached.

The

Global(descriptor, v)

constructor, when invoked, performs the following steps:

  1. Let mutable be descriptor["mutable"].

  2. Let valuetype be ToValueType(descriptor["value"]).

  3. If valuetype is v128 or exnref,

    1. Throw a TypeError exception.

  4. If v is missing,

    1. Let value be DefaultValue(valuetype).

    2. Assert: value is not error.

  5. Otherwise,

    1. Let value be ToWebAssemblyValue(v, valuetype).

  6. If mutable is true, let globaltype be var valuetype; otherwise, let globaltype be const valuetype.

  7. Let store be the current agent’s associated store.

  8. Let (store, globaladdr) be global_alloc(store, globaltype, value).

  9. Set the current agent’s associated store to store.

  10. Initialize this from globaladdr.

The algorithm

GetGlobalValue

(

Global global

) performs the following steps:

  1. Let store be the current agent’s associated store.

  2. Let globaladdr be global.[[Global]].

  3. Let globaltype be global_type(store, globaladdr).

  4. If globaltype is of the form mut valuetype where valuetype is v128 or exnref, throw a TypeError.

  5. Let value be global_read(store, globaladdr).

  6. Return ToJSValue(value).

The getter of the

value

attribute of

Global

, when invoked, performs the following steps:

  1. Return GetGlobalValue(this).

The setter of the value attribute of Global, when invoked, performs the following steps:

  1. Let store be the current agent’s associated store.

  2. Let globaladdr be this.[[Global]].

  3. Let mut valuetype be global_type(store, globaladdr).

  4. If valuetype is v128 or exnref, throw a TypeError.

  5. If mut is const, throw a TypeError.

  6. Let value be ToWebAssemblyValue(the given value, valuetype).

  7. Let store be global_write(store, globaladdr, value).

  8. If store is error, throw a RangeError exception.

  9. Set the current agent’s associated store to store.

The

valueOf()

method, when invoked, performs the following steps:

  1. Return GetGlobalValue(this).

4.6. Exported Functions

A WebAssembly function is made available in JavaScript as an Exported Function. Exported Functions are Built-in Function Objects which are not constructors, and which have a [[FunctionAddress]] internal slot. This slot holds a function address relative to the surrounding agent's associated store.

The

name of the WebAssembly function funcaddr

is found by performing the following steps:

  1. Let store be the surrounding agent's associated store.

  2. Let funcinst be store.funcs[funcaddr].

  3. If funcinst is of the form {type functype, hostcode hostfunc},

    1. Assert: hostfunc is a JavaScript object and IsCallable(hostfunc) is true.

    2. Let index be the index of the host function funcaddr.

  4. Otherwise,

    1. Let moduleinst be funcinst.module.

    2. Assert: funcaddr is contained in moduleinst.funcaddrs.

    3. Let index be the index of moduleinst.funcaddrs where funcaddr is found.

  5. Return ! ToString(index).

To

coerce JavaScript arguments

from a

functype

and a

list

of JavaScript arguments

argValues

, perform the following steps

  1. Let [parameters] → [results] be functype.

  2. If parameters or results contain v128 or exnref, throw a TypeError. Note: the above error is thrown each time the [[Call]] method is invoked.

  3. Let args be « ».

  4. Let i be 0.

  5. For each t of parameters,

    1. If argValues’s size > i, let arg be argValues[i].

    2. Otherwise, let arg be undefined.

    3. Append ToWebAssemblyValue(arg, t) to args.

    4. Set i to i + 1.

  6. return args.

To

call an Exported Function

with

function address funcaddr

and a

list

of JavaScript arguments

argValues

, perform the following steps:

  1. Let store be the surrounding agent's associated store.

  2. Let functype be func_type(store, funcaddr).

  3. Let args be the result of coercing arguments (functype,argValues).

  4. Let (store, ret) be the result of func_invoke(store, funcaddr, args).

  5. Set the surrounding agent's associated store to store.

  6. If ret is error, throw an exception. This exception must be a WebAssembly RuntimeError exception, unless otherwise indicated by the WebAssembly error mapping.

  7. If ret is THROW ref.exn exnaddr, then:

    1. Let tagaddr be exn_tag(store, exnaddr).

    2. Let payload be exn_read(store, exnaddr).

    3. Let jsTagAddr be the result of getting the JavaScript exception tag.

    4. If tagaddr is equal to jsTagAddr,

      1. Throw the result of retrieving a host value from payload[0].

    5. Otherwise,

      1. Let exception be a new Exception created from exnaddr.

      2. Throw exception.

  8. Let outArity be the size of ret.

  9. If outArity is 0, return undefined.

  10. Otherwise, if outArity is 1, return ToJSValue(ret[0]).

  11. Otherwise,

    1. Let values be « ».

    2. For each r of ret,

      1. Append ToJSValue(r) to values.

    3. Return CreateArrayFromList(values).

Note: Calling an Exported Function executes in the [[Realm]] of the callee Exported Function, as per the definition of built-in function objects.

Note: Exported Functions do not have a [[Construct]] method and thus it is not possible to call one with the new operator.

To

coerce WebAssembly arguments

from a

list

of

parameterTypes

and a

list

of JavaScript arguments

arguments

, perform the following steps

  1. If parameterTypes contain v128, throw a TypeError.

  2. Let jsArguments be « ».

  3. For each arg of arguments,

    1. Append ! ToJSValue(arg) to jsArguments.

  4. Return jsArguments.

To

coerce a JavaScript return

from a JavaScript

ret

and a list of

results

types, perform the following steps:

  1. Let resultsSize be results’s size.

  2. If resultsSize is 0, return « ».

  3. Otherwise, if resultsSize is 1, return « ? ToWebAssemblyValue(ret, results[0]) ».

  4. Otherwise,

    1. Let method be ? GetMethod(ret, %Symbol.iterator%).

    2. If method is undefined, throw a TypeError.

    3. Let values be ? IteratorToList(? GetIteratorFromMethod(ret, method)).

    4. Let wasmValues be a new, empty list.

    5. If values’s size is not resultsSize, throw a TypeError exception.

    6. For each value and resultType in values and results, paired linearly,

      1. Append ToWebAssemblyValue(value, resultType) to wasmValues.

    7. Return wasmValues.

The algorithm

ToJSValue

(

w

) coerces a

WebAssembly value

to a JavaScript value by performing the following steps:

  1. Assert: w is not of the form v128.const v128.

  2. Assert: w is not of the form ref.exn exnaddr.

  3. If w is of the form i64.const u64,

    1. Let i64 be signed_64(u64).

    2. Return (i64 interpreted as a mathematical value).

  4. If w is of the form i32.const i32,

    1. Let i32 be signed_32(i32).

    2. Return 𝔽(i32 interpreted as a mathematical value).

  5. If w is of the form f32.const f32,

    1. If f32 is +∞ or −∞, return +∞𝔽 or -∞𝔽, respectively.

    2. If f32 is nan, return NaN.

    3. Return 𝔽(f32 interpreted as a mathematical value).

  6. If w is of the form f64.const f64,

    1. If f64 is +∞ or −∞, return +∞𝔽 or -∞𝔽, respectively.

    2. If f64 is nan, return NaN.

    3. Return 𝔽(f64 interpreted as a mathematical value).

  7. If w is of the form ref.null t, return null.

  8. If w is of the form ref.i31 u31,

    1. Let i31 be signed_31(u31).

    2. Let return 𝔽(i31).

  9. If w is of the form ref.struct structaddr, return the result of creating a new Exported GC Object from structaddr and "struct".

  10. If w is of the form ref.array arrayaddr, return the result of creating a new Exported GC Object from arrayaddr and "array".

  11. If w is of the form ref.func funcaddr, return the result of creating a new Exported Function from funcaddr.

  12. If w is of the form ref.host hostaddr, return the result of retrieving a host value from hostaddr.

  13. If w is of the form ref.extern ref, return ToJSValue(ref).

Note: Number values which are equal to NaN may have various observable NaN payloads; see NumericToRawBytes for details.

The algorithm

ToWebAssemblyValue

(

v

,

type

) coerces a JavaScript value to a

WebAssembly value

by performing the following steps:

  1. Assert: type is not v128.

  2. Assert: type is not exnref.

  3. If type is i64,

    1. Let i64 be ? ToBigInt64(v).

    2. Let u64 be the unsigned integer such that i64 is signed_64(u64).

    3. Return i64.const u64.

  4. If type is i32,

    1. Let i32 be ? ToInt32(v).

    2. Let u32 be the unsigned integer such that i32 is signed_32(u32).

    3. Return i32.const u32.

  5. If type is f32,

    1. Let number be ? ToNumber(v).

    2. If number is NaN,

      1. Let n be an implementation-defined integer such that canon32 ≤ n < 2signif(32).

      2. Let f32 be nan(n).

    3. Otherwise, \1.

    4. Return f32.const f32.

  6. If type is f64,

    1. Let number be ? ToNumber(v).

    2. If number is NaN,

      1. Let n be an implementation-defined integer such that canon64 ≤ n < 2signif(64).

      2. Let f64 be nan(n).

    3. Otherwise,

      1. Let f64 be number.

    4. Return f64.const f64.

  7. If type is of the form ref null heaptype,

    1. If v is null,

      1. Let r be ref.null heaptype.

    2. Else if match_valtype(type, ref null extern),

      1. Let ref be ToWebAssemblyValue(v, ref any).

      2. Let r be ref.extern ref.

    3. Else if v is an Exported Function and match_valtype(type, ref null func),

      1. Let funcaddr be the value of v’s [[FunctionAddress]] internal slot.

      2. Let r be ref.func funcaddr.

    4. Else if v is a Number and v is equal to ? ToInt32(v) and (v) < 230 and (v) ⩾ -230,

      1. Let i31 ? ToInt32(v).

      2. Let u31 be the unsigned integer such that i31 is signed_31(i31).

      3. Let r be ref.i31 u31.

    5. Else if v is an Exported GC Object,

      1. Let objectaddr be the value of v’s [[ObjectAddress]] internal slot.

      2. Let objectkind be the value of v’s [[ObjectKind]] internal slot.

      3. If objectkind is "array",

        1. Let r be ref.array objectaddr.

      4. If objectkind is "struct",

        1. Let r be ref.struct objectaddr.

    6. Else,

      1. Let map be the surrounding agent's associated host value cache.

      2. If a host address hostaddr exists such that map[hostaddr] is the same as v,

        1. Return ref.host hostaddr.

      3. Let host address hostaddr be the smallest address such that map[hostaddr] exists is false.

      4. Set map[hostaddr] to v.

      5. Let r be ref.host hostaddr.

    7. Let store be the current agent’s associated store.

    8. Let actualtype be ref_type(store, r).

    9. If match_valtype(actualtype, type) is false,

      1. Throw a TypeError.

    10. Return r.

  8. Assert: This step is not reached.

4.7. JavaScript Promise Integration

Note: The JavaScript Promise Integration API (JSPI) allows WebAssembly functions to suspend and resume their execution -- based on the behavior of JavaScript functions that return Promise objects.

A Suspending marker object represents a JavaScript function whose calls via WebAssembly imports should be suspended when they return a Promise object. Each Suspending marker object has a [[WrappedFunction]] internal slot which holds a JavaScript function.

In addition, the promising function takes as argument a WebAssembly function and returns a JavaScript function that returns a Promise that is resolved when the WebAssembly function completes.

Each agent maintains a Execution Context Status map, mapping from execution contexts to a status symbol. The purpose of this map is to ensure that applications do not try to suspend JavaScript frames and also to ensure that calls to imports marked with a Suspending marker object are properly balanced by corresponding uses of WebAssembly.promising.

If present, a status can be one of two stack status values:

If an execution context is not present in the status mapping, then it may not be paused or reentered.

When a new agent is created, its status mapping is set to the empty map.

[Exposed=*]
partial namespace WebAssembly {
    Function promising(Function wasmFunc);
};

[LegacyNamespace=WebAssembly, Exposed=*]
interface Suspending {
    constructor(Function jsFun);
};

The algorithm to

run a Promising function

from the JavaScript object

wasmFunc

and a

list

of

WebAssembly values arguments

consists of the following steps:

  1. Let promise be a new PromiseCapabilityRecord.

  2. Let funcaddr be the value of wasmFunc’s [[FunctionAddress]] internal slot.

  3. Let runner be a new AbstractClosure with no parameters that captures promise, funcaddr, and arguments and performs the following steps when called:

    1. Perform evaluate a Promising function(promise,funcaddr,arguments).

  4. Perform ?AsyncFunctionStart(promise,runner).

  5. Return promise.

The algorithm to

evaluate a Promising function

(

promise

,

funcaddr

,

arguments

) consists of the following steps:

  1. Let store be the surrounding agent's associated store.

  2. Let functype be func_type(store, funcaddr).

  3. Let args be the result of coercing arguments (functype,arguments).

  4. Let map be the surrounding agent's associated Execution Context Status map.

  5. Let ec be the currently executing execution context, i.e., the execution context that is at the top of the surrounding agent's current execution context stack.

  6. Assert: map does not contain any entry for ec.

  7. Add an entry mapping ec to active in map.

  8. Let (store, result) be the result of func_invoke(store, funcaddr, args).

  9. Assert: If control reaches here, we have done waiting for suspended imports.

  10. If the entry for ec in map is not active then throw a WebAssembly SuspendError exception. Otherwise, remove the entry for ec from map.

  11. Set the surrounding agent's associated store to store.

  12. If result is error, throw a WebAssembly RuntimeError exception, unless otherwise indicated by the WebAssembly error mapping.

  13. Otherwise, if result is of the form throw exnaddr,

    1. Reject promise with result.

  14. Otherwise,

    1. Assert: result is a list of WebAssembly values.

    2. Let outArity be the size of result.

    3. If outArity is 0, return undefined.

    4. Otherwise, if outArity is 1, let jsReturnValue be ToJSValue(result[0]).

    5. Otherwise,

      1. Let values be « ».

      2. For each r of result,

      3. Append ToJSValue(r) to values.

      4. Let jsReturnValue be CreateArrayFromList(values).

    6. Resolve promise with jsReturnValue.

  15. Return UNUSED.

The

Suspending(jsFun)

constructor, when invoked, performs the following steps:

  1. If IsCallable(jsFun) is false, throw a TypeError.

  2. Let suspendingProto be \[[%WebAssembly.Suspending.prototype%]].

  3. Let susp be the result of OrdinaryObjectCreate(suspendingProto,«[[WrappedFunction]]»).

  4. Set susp.[[WrappedFunction]] to jsFun.

  5. Return susp.

To

create a suspending function

from a JavaScript function

func

, with type

functype

perform the following steps:

  1. Assert: IsCallable(func).

  2. Let stored settings be the incumbent settings object.

  3. Let hostfunc be a host function which performs the following steps when called with arguments arguments:

    1. Let realm be func’s associated Realm.

    2. Let relevant settings be realm’s settings object.

    3. Let async_context be the surrounding agent's running execution context.

    4. Let map be the surrounding agent's associated Execution Context Status map.

    5. If the entry for async_context in map is not active, then:

      1. Perform throw a JavaScript exception with a SuspendError exception.

    6. Prepare to run script with relevant settings.

    7. Prepare to run a callback with stored settings.

    8. Let [parameters] → [resultTypes] be functype.

    9. Let jsArguments be the result of coerce WebAssembly arguments(parameters,arguments).

    10. Let ret be Completion(Call(func, undefined, jsArguments)).

    11. Clean up after running a callback with stored settings.

    12. Clean up after running script with relevant settings.

    13. Assert: ret.[[Type]] is throw or normal .

    14. If ret.[[Type]] is throw , then:

      1. Let type, payload and opaqueData be the result of coercing the JavaScript exception ret.[[Value]].

      2. Throw with type, payload and opaqueData.

    15. Otherwise, if size of ret is 1 and IsPromise(ret.[[Value]][0]):

      1. Let promise be ret.[[Value]][0].

      2. Set the entry for async_context in map to paused.

      3. Let awaitResult be the result of performing Completion(Await(promise)).

      4. Note: We only invoke Await if the call to func has returned a Promise object.

      5. Note: This will suspend both this algorithm, and the WebAssembly function being invoked by the evaluate a Promising function algorithm. On return, ret will be either a normal completion or a throw completion.

      6. If the entry for async_context in map is not paused then:

        1. Perform throw a JavaScript exception with a SuspendError.

      7. Otherwise, set the entry to active.

      8. If awaitResult.[[Type]] is throw , then:

      9. Let type, payload and opaqueData be the result of coercing the JavaScript exception ret.[[Value]].

      10. Throw with type, payload and opaqueData.

      11. Otherwise, return the result of performing coerce a JavaScript return on resultTypes and awaitResult.

    16. Otherwise, return the result of performing coerce a JavaScript return on resultTypes and ret.

  4. Let store be the surrounding agent's associated store.

  5. Let (store, funcaddr) be func_alloc(store, functype, hostfunc).

  6. Set the surrounding agent's associated store to store.

  7. Return funcaddr.

4.8. Tags

The tag_alloc(store, parameters) algorithm creates a new tag address for parameters in store and returns the updated store and the tag address.

4.8.1. Tag types
dictionary TagType {
  required sequence<ValueType> parameters;
};

[LegacyNamespace=WebAssembly, Exposed=(Window,Worker,Worklet)]
interface Tag {
  constructor(TagType type);
};

A Tag value represents an exception tag.

4.9. Garbage Collected Objects

A WebAssembly struct or array is made available in JavaScript as an Exported GC Object. An Exported GC Object is an exotic object that wraps a garbage collected WebAssembly reference value. Most JavaScript operations on an Exported GC Object will throw an exception or return undefined.

Note: These operations may be refined in the future to allow richer interactions in JavaScript with WebAssembly structs and arrays.

An Exported GC Object contains an [[ObjectAddress]] internal slot, which holds a object address relative to the surrounding agent's associated store, and an [[ObjectKind]] internal slot, which holds the string value "struct" or "array".

The internal methods of an Exported GC Object use the following implementations.

The

[[GetPrototypeOf]] internal method of an Exported GC Object O

takes no arguments and returns null. It performs the following steps when called:

  1. Return null.

The

[[SetPrototypeOf]] internal method of an Exported GC Object O

takes argument

V

(an Object or null) and returns a boolean. It performs the following steps when called:

  1. Return false.

The

[[IsExtensible]] internal method of an Exported GC Object O

takes no arguments and returns a boolean. It performs the following steps when called:

  1. Return false.

The

[[PreventExtensions]] internal method of an Exported GC Object O

takes no arguments and returns a boolean. It performs the following steps when called:

  1. Return false.

The

[[GetOwnProperty]] internal method of an Exported GC Object O

takes argument

P

(a property key) and returns undefined. It performs the following steps when called:

  1. Return undefined.

The

[[DefineOwnProperty]] internal method of an Exported GC Object O

takes arguments

P

(a property key) and

Desc

(a property descriptor) and returns a boolean. It performs the following steps when called:

  1. Return false.

The

[[HasProperty]] internal method of an Exported GC Object O

takes argument

P

(a property key) and returns a boolean. It performs the following steps when called:

  1. Return false.

The

[[Get]] internal method of an Exported GC Object O

takes arguments

P

(a property key) and

Receiver

(an ECMAScript language value) and returns undefined. It performs the following steps when called:

  1. Return undefined.

The

[[Set]] internal method of an Exported GC Object O

takes arguments

P

(a property key),

V

(an ECMAScript language value), and

Receiver

(an ECMAScript language value) and throws an exception. It performs the following steps when called:

  1. Throw a TypeError.

The

[[Delete]] internal method of an Exported GC Object O

takes argument

P

(a property key) and throws an exception. It performs the following steps when called:

  1. Throw a TypeError.

The

[[OwnPropertyKeys]] internal method of an Exported GC Object O

takes no arguments and returns a list. It performs the following steps when called:

  1. Let keys be a new empty list.

  2. Return keys.

4.10. Exceptions
dictionary ExceptionOptions {
  boolean traceStack = false;
};

[LegacyNamespace=WebAssembly, Exposed=(Window,Worker,Worklet)]
interface Exception {
  constructor(Tag exceptionTag, sequence<any> payload, optional ExceptionOptions options = {});
  any getArg([EnforceRange] unsigned long index);
  boolean is(Tag exceptionTag);
  readonly attribute (DOMString or undefined) stack;
};

An Exception value represents an exception.

The new Exception(exceptionTag, payload, options) constructor steps are:

  1. Let JSTagAddr be the result of getting the JavaScript exception tag.

  2. If exceptionTag.[[Address]] is equal to JSTagAddr,

    1. Throw a TypeError.

  3. Let store be the surrounding agent's associated store.

  4. Let [types] → [] be tag_type(store, exceptionTag.[[Address]]).

  5. If types’s size is not payload’s size,

    1. Throw a TypeError.

  6. Let wasmPayload be « ».

  7. For each value and resultType of payload and types, paired linearly,

    1. If resultType is v128 or exnref,

      1. Throw a TypeError.

    2. Append ? ToWebAssemblyValue(value, resultType) to wasmPayload.

  8. Let (store, exceptionAddr) be exn_alloc(store, exceptionTag.[[Address]], wasmPayload).

  9. Set the surrounding agent's associated store to store.

  10. Initialize this from exceptionAddr.

  11. If options["traceStack"] is true,

    1. Set this.[[Stack]] to either a DOMString representation of the current call stack or undefined.

The is(exceptionTag) method steps are:

  1. If this.[[Type]] is not equal to exceptionTag.[[Address]],

    1. Return false.

  2. Return true.

The stack getter steps are:

  1. Return this.[[Stack]].

4.10.1. JavaScript exceptions

The JavaScript exception tag is a tag address associated with the surrounding agent. It is allocated in the agent’s associated store on first use and cached. It always has the tag type « externref » → « ».

4.11. Error Objects

WebAssembly defines the following Error classes: CompileError, LinkError, RuntimeError, and SuspendError.

When the

namespace object

for the

WebAssembly

namespace is

created

, the following steps must be run:

  1. Let namespaceObject be the namespace object.

  2. For each error of « "CompileError", "LinkError", "RuntimeError", "SuspendError" »,

    1. Let constructor be a new object, implementing the NativeError Object Structure, with NativeError set to error.

    2. ! DefineMethodProperty(namespaceObject, error, constructor, false).

Note: This defines CompileError, LinkError, RuntimeError, and SuspendError classes on the WebAssembly namespace, which are produced by the APIs defined in this specification. They expose the same interface as native JavaScript errors like TypeError and RangeError.

Note: It is not currently possible to define this behavior using Web IDL.

5. Error Condition Mappings to JavaScript

Running WebAssembly programs encounter certain events which halt execution of the WebAssembly code. WebAssembly code (currently) has no way to catch these conditions and thus an exception will necessarily propagate to the enclosing non-WebAssembly caller (whether it is a browser, JavaScript or another runtime system) where it is handled like a normal JavaScript exception.

If WebAssembly calls JavaScript via import and the JavaScript throws an exception, the exception is propagated through the WebAssembly activation to the enclosing caller.

Because JavaScript exceptions can be handled, and JavaScript can continue to call WebAssembly exports after a trap has been handled, traps do not, in general, prevent future execution.

5.1. Stack Overflow

Whenever a stack overflow occurs in WebAssembly code, the same class of exception is thrown as for a stack overflow in JavaScript. The particular exception here is implementation-defined in both cases.

Note: ECMAScript doesn’t specify any sort of behavior on stack overflow; implementations have been observed to throw RangeError, InternalError or Error. Any is valid here.

5.2. Out of Memory

Whenever validation, compilation or instantiation run out of memory, the same class of exception is thrown as for out of memory conditions in JavaScript. The particular exception here is implementation-defined in both cases.

Note: ECMAScript doesn’t specify any sort of behavior on out-of-memory conditions; implementations have been observed to throw OOMError and to crash. Either is valid here.

A failed allocation of a large table or memory may either result in

In a future revision, we may reconsider more reliable and recoverable errors for allocations of large amounts of memory.

See Issue 879 for further discussion.

6. Implementation-defined Limits

The WebAssembly core specification allows an implementation to define limits on the syntactic structure of the module. While each embedding of WebAssembly may choose to define its own limits, for predictability the standard WebAssembly JavaScript Interface described in this document defines the following exact limits. An implementation must reject a module that exceeds one of the following limits with a CompileError. In practice, an implementation may run out of resources for valid modules below these limits.

An implementation must throw a RuntimeError if one of the following limits is exceeded during runtime: In practice, an implementation may run out of resources for valid modules below these limits.

7. Security and Privacy Considerations

This section is non-normative.

This document defines a host environment for WebAssembly. It enables a WebAssembly instance to import JavaScript objects and functions from an import object, but otherwise provides no access to the embedding environment. Thus a WebAssembly instance is bound to the same constraints as JavaScript.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4