A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://w3c.github.io/mathml-docs/ctopintent below:

Examples from MathML4

Introduction

The Intent of Content Markup

The Structure and Scope of Content MathML Expressions

Strict Content MathML

Content Dictionaries

Content MathML Concepts

Content MathML Elements Encoding Expression Structure Numbers <cn>

Rendering <cn>,<sep/>-Represented Numbers

Strict uses of <cn>
                        
<cn type="hexdouble">7F800000</cn>
                     
Non-Strict uses of <cn>
                        <cn base="16">7FE0</cn>
                     
                        <cn base="1000">10F</cn>
                     
                        <cn type="rational">22<sep/>7</cn>
                     
                        
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

                     
                        
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
                     
Rewrite: cn sep
                  
<cn type="rational" base="b">n<sep/>d</cn>
               
                  
<apply><csymbol cd="nums1">rational</csymbol>
  <cn type="integer" base="b">n</cn>
  <cn type="integer" base="b">d</cn>
</apply>
               
Rewrite: cn based_integer
                  
<cn type="integer" base="16">FF60</cn>
               
                  
<apply><csymbol cd="nums1">based_integer</csymbol>
  <cn type="integer">16</cn>
  <cs>FF60</cs>
</apply>
               
Rewrite: cn constant
                     <cn type="constant">c</cn>
                  
                     <csymbol cd="nums1">c2</csymbol>
                  
Rewrite: cn presentation mathml
                     
<cn type="rational"><mi>P</mi><sep/><mi>Q</mi></cn>
                  
                     
<apply><csymbol cd="nums1">rational</csymbol>
 <semantics>
  <ci>p</ci>
  <annotation-xml encoding="MathML-Presentation">
   <mi>P</mi>
  </annotation-xml>
 </semantics>
 <semantics>
  <ci>q</ci>
  <annotation-xml encoding="MathML-Presentation">
   <mi>Q</mi>
  </annotation-xml>
 </semantics>
</apply>
                  
Content Identifiers <ci>
               <ci>x</ci>
            
Strict uses of <ci>
                  <ci type="integer">n</ci>
               
                  
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <csymbol cd="mathmltypes">integer_type</csymbol>
  </annotation-xml>
</semantics>
               
Non-Strict uses of <ci> Rewrite: ci type annotation
                     <ci type="T">n</ci>
                  
                     
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <ci>T</ci>
  </annotation-xml>
</semantics>
                  
Rewrite: ci presentation mathml
                     <ci><mi>P</mi></ci>
                  
                     
<semantics>
  <ci>p</ci>
  <annotation-xml encoding="MathML-Presentation">
    <mi>P</mi>
  </annotation-xml>
</semantics>
                  
                  
<ci>
  <msup><mi>C</mi><mn>2</mn></msup>
</ci>
               
                  
<semantics>
  <ci>C2</ci>
  <annotation-xml encoding="MathML-Presentation">
    <msup><mi>C</mi><mn>2</mn></msup>
  </annotation-xml>
</semantics>
               
Rendering Content Identifiers
                  <ci type="vector">V</ci>
               
Content Symbols <csymbol>

Strict uses of <csymbol>

Non-Strict uses of <csymbol> Rewrite: csymbol type annotation
                     <csymbol type="T">symbolname</csymbol>
                  
                     
<semantics>
  <csymbol>symbolname</csymbol>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <ci>T</ci>
  </annotation-xml>
</semantics>
                  

Rendering Symbols

String Literals <cs>
               
<set>
  <cs>A</cs><cs>B</cs><cs>  </cs>
</set>
            
Function Application <apply> Strict Content MathML
                  <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
               
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <ci>x</ci>
  <ci>y</ci>
  <ci>z</ci>
</apply>
               
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <apply><csymbol cd="arith1">times</csymbol>
    <ci>a</ci>
    <ci>x</ci>
  </apply>
  <ci>b</ci>
</apply>
               
                  
<apply><csymbol cd="arith1">times</csymbol>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
               
                  <apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>
               
                  
<apply>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
               
Rendering Applications
                  
<apply><ci>f</ci>
  <ci>a1</ci>
  <ci>a2</ci>
  <ci>...</ci>
  <ci>an</ci>
</apply>
               
                  
<apply><ci>op</ci>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>d</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
               
Bindings and Bound Variables <bind> and <bvar>

Bindings

Bound Variables
                  
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci id="var-x">x</ci></bvar>
  <apply><csymbol cd="relation1">lt</csymbol>
    <ci xref="var-x">x</ci>
    <cn>1</cn>
  </apply>
</bind>
               
               
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
    <apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>
  </apply>
</bind>
            

Renaming Bound Variables

Rendering Binding Constructions
                  
<bind><ci>b</ci>
  <bvar><ci>x1</ci></bvar>
  <bvar><ci>...</ci></bvar>
  <bvar><ci>xn</ci></bvar>
  <ci>s</ci>
</bind>
               
Structure Sharing <share>
                              
<apply><ci>f</ci>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
</apply>
                           
                              
<apply><ci>f</ci>
  <apply id="t1"><ci>f</ci>
    <apply id="t11"><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <share src="#t11"/>



  </apply>
  <share src="#t1"/>









</apply>
                           

An Acyclicity Constraint

                  
<bind id="outer"><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><ci>f</ci>
    <bind id="inner"><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <share id="copy" src="#orig"/>
    </bind>
    <apply id="orig"><ci>g</ci><ci>x</ci></apply>
  </apply>
</bind>
               

Attribution via semantics

Error Markup <cerror>
               
<cerror>
  <csymbol cd="aritherror">DivisionByZero</csymbol>
  <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
            
               
<apply><csymbol cd="relation1">eq</csymbol>
  <cerror>
    <csymbol cd="aritherror">DivisionByZero</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
  </cerror>
  <cn>0</cn>
</apply>
            
               
<cerror>
  <csymbol cd="aritherror">DivisionByZero</csymbol>
  <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
            
               
<cerror>
  <csymbol cd="error">Illegal bound variable</csymbol>
  <cs> &lt;bvar&gt;&lt;plus/&gt;&lt;/bvar&gt; </cs>
</cerror>
            

Encoded Bytes <cbytes>

Content MathML for Specific Structures Container Markup Container Markup for Constructor Symbols
                     <set><ci>a</ci><ci>b</ci><ci>c</ci></set>
                  
                     <apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>
                  
                     
<set>
  <bvar><ci>x</ci></bvar> 
  <domainofapplication><integers/></domainofapplication>
  <apply><times/><cn>2</cn><ci>x</ci></apply>
</set>
                  
                     
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <apply><csymbol cd="arith1">times</csymbol>
      <cn>2</cn>
      <ci>x</ci>
    </apply>
  </bind>
  <csymbol cd="setname1">Z</csymbol>
</apply>
                  
Container Markup for Binding Constructors
                  <lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>
               
                  
<bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar><ci>x</ci>
</bind>
               
Bindings with <apply>
                  
<apply><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><geq/><ci>x</ci><ci>x</ci></apply>
</apply>
               
                  
<bind><csymbol cd="logic1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>
</bind>
               
                  
<apply><sum/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
                  
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol>
      <ci>x</ci>
      <ci>i</ci>
    </apply>
  </bind>
</apply>
               
Qualifiers Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>
                  
<apply><int/>
  <domainofapplication>
    <ci type="set">C</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <interval><cn>0</cn><cn>1</cn></interval>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>1</cn></uplimit>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <domainofapplication>
    <set>
      <bvar><ci>t</ci></bvar>
      <bvar><ci>u</ci></bvar>
      <condition>
        <apply><and/>
          <apply><leq/><cn>0</cn><ci>t</ci></apply>
          <apply><leq/><ci>t</ci><cn>1</cn></apply>
          <apply><leq/><cn>0</cn><ci>u</ci></apply>
          <apply><leq/><ci>u</ci><cn>1</cn></apply>
        </apply>
      </condition>
      <list><ci>t</ci><ci>u</ci></list>
    </set>
  </domainofapplication>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</apply>
               
Rewrite: interval qualifier
                  
<apply><ci>H</ci>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <ci>C</ci>
</apply>
               
                  
<apply><ci>H</ci>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <apply><csymbol cd="interval1">interval</csymbol>
      <ci>a</ci>
      <ci>b</ci>
    </apply>
  </domainofapplication>
  <ci>C</ci>
</apply>
               

Rewrite: condition

Rewrite: restriction
                  
<apply><ci>F</ci>
  <domainofapplication>
    <ci>C</ci>
  </domainofapplication>
  <ci>a1</ci>
  <ci>an</ci>
</apply>
               
                  
<apply>
  <apply><csymbol cd="fns1">restriction</csymbol>
    <ci>F</ci>
    <ci>C</ci>
  </apply>
  <ci>a1</ci>
  <ci>an</ci>
</apply>
               

Rewrite: apply bvar domainofapplication

Uses of <degree>
               
<apply><diff/>
  <bvar>
    <ci>x</ci>
    <degree><cn>2</cn></degree>
  </bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>
            

Uses of <momentabout> and <logbase>

Operator Classes Rewrite: element
               <plus/>
            
                  <csymbol cd="arith1">plus</csymbol>
               
N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor)

Schema Patterns

Rewriting to Strict Content MathML Rewrite: n-ary domainofapplication
                        
<apply><union/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
                        
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="set1">union</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <ci>expression-in-x</ci>
    </bind>
    <ci>D</ci>
  </apply>
</apply>
                     
N-ary Constructors for set and list (class nary-setlist-constructor)

Schema Patterns

Rewriting to Strict Content MathML Rewrite: n-ary setlist domainofapplication
                        
<set>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</set>
                     
                        
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
  </bind>
  <ci>D</ci>
</apply>
                     
N-ary Relations (classes nary-reln, nary-set-reln)

Schema Patterns

Rewriting to Strict Content MathML Rewrite: n-ary relations
                        
<apply><lt/>
  <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
</apply>
                     
                        
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
  <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
 </apply>
</apply>

                     
Rewrite: n-ary relations bvar
                        
<apply><lt/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>R</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>
                     
                        
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">map</csymbol>
   <ci>R</ci>
   <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>x</ci></bvar>
     <ci>expression-in-x</ci>
   </bind>
  </apply>
</apply>
                     
N-ary/Unary Operators (classes nary-minmax, nary-stats)

Schema Patterns

Rewriting to Strict Content MathML Rewrite: n-ary unary set
                     
<apply><max/><ci>a1</ci><ci>a2</ci><ci>an</ci></apply>
                  
                     
<apply><csymbol cd="minmax1">max</csymbol>
  <apply><csymbol cd="set1">set</csymbol>
    <ci>a1</ci><ci>a2</ci><ci>an</ci>
  </apply>
</apply>
                  
Rewrite: n-ary unary domainofapplication
                        
<apply><max/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
                        
<apply><csymbol cd="minmax1">max</csymbol>
  <apply><csymbol cd="set1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <ci>expression-in-x</ci>
    </bind>
    <ci>D</ci>
  </apply>
</apply>
                     
Rewrite: n-ary unary single
                     
<apply><max/><ci>a</ci></apply>
                  
                     
<apply><csymbol cd="minmax1">max</csymbol> <ci>a</ci> </apply>
                  
Binary Operators (classes binary-arith, binary-logical, binary-reln, binary-linalg, binary-set)

Schema Patterns

Unary Operators (classes unary-arith, unary-linalg, unary-functional, unary-set, unary-elementary, unary-veccalc)

Schema Patterns

Constants (classes constant-arith, constant-set)

Schema Patterns

Quantifiers (class quantifier)

Schema Patterns

Rewriting to Strict Content MathML Rewrite: quantifier
                        
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
                        
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>D</ci></apply>
  <ci>expression-in-x</ci>
  </apply>
</bind>

                     
Other Operators (classes lambda, interval, int, diff partialdiff, sum, product, limit)

Schema Patterns

Non-strict Attributes Rewrite: attributes
                  
<ci class="foo" xmlns:other="http://example.com" other:att="bla">x</ci>
               
                  
<semantics>
  <ci>x</ci>
  <annotation cd="mathmlattr"
     name="class" encoding="text/plain">foo</annotation>
  <annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content">
    <apply><csymbol cd="mathmlattr">foreign_attribute</csymbol>
      <cs>http://example.com</cs>
      <cs>other</cs>
      <cs>att</cs>
      <cs>bla</cs>
    </apply>
  </annotation-xml>
</semantics>
               
Content MathML for Specific Operators and Constants Functions and Inverses Interval <interval>
                  
<interval closure="open"><ci>x</ci><cn>1</cn></interval>
               
                  
<interval closure="closed"><cn>0</cn><cn>1</cn></interval>
               
                  
<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>
               
                  
<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>
               
Inverse <inverse>
                  
<apply><inverse/>
  <ci> f </ci>
</apply>
               
                  
<apply>
  <apply><inverse/><ci type="matrix">A</ci></apply>
  <ci>a</ci>
</apply>
               
Lambda <lambda>
                  
<lambda>
  <bvar><ci> x </ci></bvar>
  <domainofapplication><integers/></domainofapplication>
  <apply><sin/><ci> x </ci></apply>
</lambda>
               
                  
<lambda>
  <domainofapplication><integers/></domainofapplication> 
  <sin/>
</lambda>
               
                  
<lambda>
  <bvar><ci>x</ci></bvar>
  <apply><sin/>
    <apply><plus/><ci>x</ci><cn>1</cn></apply>
  </apply>
</lambda>
               
Rewrite: lambda
                  
<lambda>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <ci>expression-in-x1-xn</ci>
</lambda>
               
                  
<bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <ci>expression-in-x1-xn</ci>
</bind>
               
Rewrite: lambda domainofapplication
                  
<lambda>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x1-xn</ci>
</lambda>
               
                  
<apply><csymbol cd="fns1">restriction</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
    <ci>expression-in-x1-xn</ci>
  </bind>
  <ci>D</ci>
</apply>
               
Function composition <compose/>
                  
<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>
               
                  
<apply><eq/>
  <apply>
    <apply><compose/><ci>f</ci><ci>g</ci></apply>
    <ci>x</ci>
  </apply>
  <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
</apply>
               
Identity function <ident/>
                  
<apply><eq/>
  <apply><compose/>
    <ci type="function">f</ci>
    <apply><inverse/>
      <ci type="function">f</ci>
    </apply>
  </apply>
  <ident/>
</apply>
               
Domain <domain/>
                  
<apply><eq/>
  <apply><domain/><ci>f</ci></apply>
  <reals/>
</apply>
               
codomain <codomain/>
                  
<apply><eq/>
  <apply><codomain/><ci>f</ci></apply>
  <rationals/>
</apply>
               
Image <image/>
                  
<apply><eq/>
  <apply><image/><sin/></apply>
  <interval><cn>-1</cn><cn> 1</cn></interval>
</apply>
               
Piecewise declaration <piecewise>, <piece>, <otherwise>
                  
<piecewise>
  <piece>
    <apply><minus/><ci>x</ci></apply>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>0</cn>
    <apply><eq/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <ci>x</ci>
    <apply><gt/><ci>x</ci><cn>0</cn></apply>
  </piece>
</piecewise>
               
                  
<piecewise>
  <piece>
    <cn>0</cn>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>1</cn>
    <apply><gt/><ci>x</ci><cn>1</cn></apply>
  </piece>
  <otherwise>
    <ci>x</ci>
  </otherwise>
</piecewise>
               
                  
<apply><csymbol cd="piece1">piecewise</csymbol>
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>0</cn>
    <apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>1</cn>
    <apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">otherwise</csymbol>
    <ci>x</ci>
  </apply>   
</apply>
               
Arithmetic, Algebra and Logic Quotient <quotient/>
                  
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
               
Factorial <factorial/>
                  
<apply><factorial/><ci>n</ci></apply>
               
Division <divide/>
                  
<apply><divide/>
  <ci>a</ci>
  <ci>b</ci>
</apply>
               
Maximum <max/>
                  
<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
               
                  
<apply><max/>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><in/>
      <ci>y</ci>
      <interval><cn>0</cn><cn>1</cn></interval>
    </apply>
  </condition>
  <apply><power/><ci>y</ci><cn>3</cn></apply>
</apply>
               
Minimum <min/>
                  
<apply><min/><ci>a</ci><ci>b</ci></apply>
               
                  
<apply><min/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><notin/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
Subtraction <minus/>
                  
<apply><minus/><cn>3</cn></apply>
               
                  
<apply><minus/><ci>x</ci><ci>y</ci></apply>
               
Addition <plus/>
                  
<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
               
Exponentiation <power/>
                  
<apply><power/><ci>x</ci><cn>3</cn></apply>
               
Remainder <rem/>
                  
<apply><rem/><ci> a </ci><ci> b </ci></apply>
               
Multiplication <times/>
                  
<apply><times/><ci>a</ci><ci>b</ci></apply>
               
Root <root/>
                  
<apply><root/>
  <degree><ci type="integer">n</ci></degree>
  <ci>a</ci>
</apply>
               
                  <apply><root/><ci>x</ci></apply>
               
                  
<apply><csymbol cd="arith1">root</csymbol>
  <ci>x</ci>
  <cn type="integer">2</cn>
</apply>
               
                  
<apply><root/>
  <degree><ci type="integer">n</ci></degree>
  <ci>a</ci>
</apply>
               
                  
<apply><csymbol cd="arith1">root</csymbol>
  <ci>a</ci>
  <cn type="integer">n</cn>
</apply>
               
Greatest common divisor <gcd/>
                  
<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
               
And <and/>
                  
<apply><and/><ci>a</ci><ci>b</ci></apply>
               
                  
<apply><and/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><ci>n</ci></uplimit>
  <apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn></apply>
</apply>
               
                  
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="logic1">and</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>i</ci></bvar>
      <apply><csymbol cd="relation1">gt</csymbol>
        <apply><csymbol cd="linalg1">vector_selector</csymbol>
          <ci>i</ci>
          <ci>a</ci>
        </apply>
        <cn>0</cn>
      </apply>
    </bind>
    <apply><csymbol cd="interval1">integer_interval</csymbol>
      <cn type="integer">0</cn>
      <ci>n</ci>
    </apply>
  </apply>
</apply>
               
Or <or/>
                  
<apply><or/><ci>a</ci><ci>b</ci></apply>
               
Exclusive Or <xor/>
                  
<apply><xor/><ci>a</ci><ci>b</ci></apply>
               
Not <not/>
                  
<apply><not/><ci>a</ci></apply>
               
Implies <implies/>
                  
<apply><implies/><ci>A</ci><ci>B</ci></apply>
               
Universal quantifier <forall/>
                  
<bind><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><minus/><ci>x</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>
               
                     
<bind><forall/>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/><ci>p</ci><rationals/></apply>
      <apply><in/><ci>q</ci><rationals/></apply>
      <apply><lt/><ci>p</ci><ci>q</ci></apply>
    </apply>
  </condition>
  <apply><lt/>
    <ci>p</ci>
    <apply><power/><ci>q</ci><cn>2</cn></apply>
  </apply>
</bind>
                  
                     
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
    <apply><csymbol cd="logic1">and</csymbol>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>p</ci>
        <csymbol cd="setname1">Q</csymbol>
        </apply>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>q</ci>
        <csymbol cd="setname1">Q</csymbol>
      </apply>
      <apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply>
    </apply>
    <apply><csymbol cd="relation1">lt</csymbol>
      <ci>p</ci>
      <apply><csymbol cd="arith1">power</csymbol>
        <ci>q</ci>
        <cn>2</cn>
      </apply>
    </apply>
  </apply>
</bind>
                  
Existential quantifier <exists/>
                  
<bind><exists/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>
               
                  
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <integers/>
  </domainofapplication>
   <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</apply>
               
                  
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol>
      <ci>x</ci>
      <csymbol cd="setname1">Z</csymbol>
    </apply>
    <apply><csymbol cd="relation1">eq</csymbol>
      <apply><ci>f</ci><ci>x</ci></apply>
      <cn>0</cn>
    </apply>
  </apply>
</bind>
               
Absolute Value <abs/>
                  
<apply><abs/><ci>x</ci></apply>
               
Complex conjugate <conjugate/>
                  
<apply><conjugate/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><cn>&#x2148;</cn><ci>y</ci></apply>
  </apply>
</apply>
               
Argument <arg/>
                  
<apply><arg/>
  <apply><plus/>
    <ci> x </ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
Real part <real/>
                  
<apply><real/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
Imaginary part <imaginary/>
                  
<apply><imaginary/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
Lowest common multiple <lcm/>
                  
<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
               
Floor <floor/>
                  
<apply><floor/><ci>a</ci></apply>
               
Ceiling <ceiling/>
                  
<apply><ceiling/><ci>a</ci></apply>
               
Relations Equals <eq/>
                  
<apply><eq/>
  <cn type="rational">2<sep/>4</cn>
  <cn type="rational">1<sep/>2</cn>
</apply>
               
Not Equals <neq/>
                  
<apply><neq/><cn>3</cn><cn>4</cn></apply>
               
Greater than <gt/>
                  
<apply><gt/><cn>3</cn><cn>2</cn></apply>
               
Less Than <lt/>
                  
<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>
               
Greater Than or Equal <geq/>
                  
<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>
               
                  
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">geq</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
  <cn>4</cn><cn>3</cn><cn>3</cn>
 </apply>
</apply>
               
Less Than or Equal <leq/>
                  
<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>
               
Equivalent <equivalent/>
                  
<apply><equivalent/>
  <ci>a</ci>
  <apply><not/><apply><not/><ci>a</ci></apply></apply>
</apply>
               
Approximately <approx/>
                  
<apply><approx/>
  <pi/>
  <cn type="rational">22<sep/>7</cn>
</apply>
               
Factor Of <factorof/>
                  
<apply><factorof/><ci>a</ci><ci>b</ci></apply>
               
Calculus and Vector Calculus Integral <int/>
                  
<apply><eq/>
  <apply><int/><sin/></apply>
  <cos/>
</apply>
               
                  
<apply><int/>
  <interval><ci>a</ci><ci>b</ci></interval>
  <cos/>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>1</cn></uplimit>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
Rewrite: int
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <apply><cos/><ci>x</ci></apply>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><cos/><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>

                  
                     
<apply><int/>
  <domainofapplication><ci>C</ci></domainofapplication>
  <ci>f</ci>
</apply>
                  
                     
<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>
                  
Rewrite: defint
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                  
                     
<apply><csymbol cd="calculus1">defint</csymbol>
  <ci>D</ci>  
  <bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
  </bind>
</apply>
                  
Rewrite: defint limits
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <ci>expression-in-x</ci>
</apply>
               
                  
<apply><csymbol cd="calculus1">defint</csymbol>
  <apply><csymbol cd="interval1">oriented_interval</csymbol>
    <ci>a</ci> <ci>b</ci>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
  </bind>
</apply>
               
                  
<bind><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
      <apply><leq/><cn>0</cn><ci>y</ci></apply>
      <apply><leq/><ci>y</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</bind>
               
                  
<apply><csymbol cd="calculus1">defint</csymbol>
 <apply><csymbol cd="set1">suchthat</csymbol>
  <apply><csymbol cd="set1">cartesianproduct</csymbol>
   <csymbol cd="setname1">R</csymbol>
   <csymbol cd="setname1">R</csymbol>
  </apply>
  <apply><csymbol cd="logic1">and</csymbol>
   <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
   <apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>
   <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>
   <apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>
  </apply>
  <bind><csymbol cd="fns11">lambda</csymbol>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>
    <apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>
   </apply>
  </bind>
 </apply>
</apply>
               
Differentiation <diff/>
                  <apply><diff/><ci>f</ci></apply>
               
                  
<apply><eq/>
  <apply><diff/>
    <bvar><ci>x</ci></bvar>
    <apply><sin/><ci>x</ci></apply>
  </apply>
  <apply><cos/><ci>x</ci></apply>
</apply>
               
                  
<apply><diff/>
  <bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>
               
Rewrite: diff
                     
<apply><diff/>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>E</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
                     
<apply><diff/>
  <bvar><ci>x</ci></bvar>
  <apply><sin/><ci>x</ci></apply>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
Rewrite: nthdiff
                  
<apply><diff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <ci>expression-in-x</ci>
</apply>
               
                  
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <ci>n</ci>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
               
                  
<apply><diff/>
  <bvar><degree><cn>2</cn></degree><ci>x</ci></bvar>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
                  
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <cn>2</cn>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
               
Partial Differentiation <partialdiff/>
                  
<apply><partialdiff/>
  <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
  <ci type="function">f</ci>
</apply>
               
                  
<apply><partialdiff/>
  <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
  <lambda>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <bvar><ci>z</ci></bvar>
   <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply>
  </lambda>
</apply>
               
                  
<apply><partialdiff/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
</apply>
               
                  
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
  <degree><ci>k</ci></degree>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>
               
Rewrite: partialdiffdegree
                     
<apply><partialdiff/>
  <bvar><ci>x1</ci><degree><ci>n1</ci></degree></bvar>
  <bvar><ci>xk</ci><degree><ci>nk</ci></degree></bvar>
  <degree><ci>total-n1-nk</ci></degree>
  <ci>expression-in-x1-xk</ci>
</apply>
                  
                  
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n1</ci> <ci>nk</ci>
    </apply>
    <ci>total-n1-nk</ci>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x1</ci></bvar>
    <bvar><ci>xk</ci></bvar>
    <ci>expression-in-x1-xk</ci>
   </bind>
  </apply>
  <ci>x1</ci>
  <ci>xk</ci>
</apply>
               
                     
<apply><csymbol cd="arith1">plus</csymbol>
  <ci>n1</ci> <ci>nk</ci>
</apply>
                  
                     
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>
  <apply><sin/>
    <apply><times/><ci>x</ci><ci>y</ci></apply>
  </apply>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <apply><csymbol cd="arith1">plus</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <bvar><ci>y</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol>
        <apply><csymbol cd="arith1">times</csymbol>
          <ci>x</ci><ci>y</ci>
        </apply>
      </apply>
    </bind>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>
                  
Divergence <divergence/>
                  
<apply><divergence/><ci>a</ci></apply>
               
                  
<apply><divergence/>
  <ci type="vector">E</ci>
</apply>
               
                  
<apply><divergence/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <vector>
    <apply><plus/><ci>x</ci><ci>y</ci></apply>
    <apply><plus/><ci>x</ci><ci>z</ci></apply>
    <apply><plus/><ci>z</ci><ci>y</ci></apply>
  </vector>
</apply>
               
Gradient <grad/>
                  
<apply><grad/><ci type="function">f</ci></apply>
               
                  
<apply><grad/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
</apply>
               
Curl <curl/>
                  
<apply><curl/><ci>a</ci></apply>
               
Laplacian <laplacian/>
                  
<apply><laplacian/><ci type="vector">E</ci></apply>
               
                  
<apply><laplacian/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <apply><ci>f</ci><ci>x</ci><ci>y</ci></apply>
</apply>
               
Theory of Sets Set <set>
                  
<set>
  <ci>a</ci><ci>b</ci><ci>c</ci>
</set>
               
                  
<set>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
  <ci>x</ci>
</set>
               
                  
<set>
  <bvar><ci type="set">S</ci></bvar>
  <condition>
    <apply><in/><ci>S</ci><ci type="list">T</ci></apply>
  </condition>
  <ci>S</ci>
</set>
               
                  
<set>
  <bvar><ci> x </ci></bvar>
  <condition>
    <apply><and/>
      <apply><lt/><ci>x</ci><cn>5</cn></apply>
      <apply><in/><ci>x</ci><naturalnumbers/></apply>
    </apply>
  </condition>
  <ci>x</ci>
</set>
               
List <list>
                  
<list>
  <ci>a</ci><ci>b</ci><ci>c</ci>
</list>
               
                  
<list order="numeric">
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
</list>
               
Union <union/>
                  
<apply><union/><ci>A</ci><ci>B</ci></apply>
               
                  
<apply><union/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication>
    <ci type="list">L</ci>
  </domainofapplication>
  <ci type="set"> S</ci>
</apply>
               
Intersect <intersect/>
                  
<apply><intersect/>
  <ci type="set"> A </ci>
  <ci type="set"> B </ci>
</apply>
               
                  
<apply><intersect/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication><ci type="list">L</ci></domainofapplication>
  <ci type="set"> S </ci>
</apply>
               
Set inclusion <in/>
                  
<apply><in/><ci>a</ci><ci type="set">A</ci></apply>
               
Set exclusion <notin/>
                  
<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>
               
Subset <subset/>
                  
<apply><subset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Proper Subset <prsubset/>
                  
<apply><prsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Not Subset <notsubset/>
                  
<apply><notsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Not Proper Subset <notprsubset/>
                  
<apply><notprsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Set Difference <setdiff/>
                  
<apply><setdiff/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Cardinality <card/>
                  
<apply><eq/>
  <apply><card/><ci>A</ci></apply>
  <cn>5</cn>
</apply>
               
Cartesian product <cartesianproduct/>
                  
<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>
               
Sequences and Series Sum <sum/>
                  
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>
               
                  
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><ci type="function">f</ci><ci>x</ci></apply>
</apply>
               
                  
<apply><sum/>
  <domainofapplication>
    <ci type="set">B</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>
               
                  
<apply><sum/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
                  
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply>
               
Product <product/>
                  
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
  </apply>
</apply>
               
                  
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/>
      <ci>x</ci>
      <ci type="set">B</ci>
    </apply>
  </condition>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>
               
                  
<apply><product/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
                  
<apply><csymbol cd="arith1">product</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply>
               
Limits <limit/>
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
Rewrite: limits condition
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <ci>expression-in-x</ci>
</apply>
               
                  
<apply><csymbol cd="limit1">limit</csymbol>
  <cn>0</cn>
  <csymbol cd="limit1">null</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
  </bind>
</apply>
               
Tends To <tendsto/>
                  
<apply><tendsto type="above"/>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
   <apply><power/><ci>a</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><tendsto/>
  <vector><ci>x</ci><ci>y</ci></vector>
   <vector>
     <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
     <apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>
   </vector>
</apply>
               
Rewrite: tendsto
                  
<tendsto/>

               
                  
<semantics>
 <ci>tendsto</ci>
 <annotation-xml encoding="MathML-Content">
  <tendsto/>
 </annotation-xml>
</semantics>
               
Elementary classical functions Common trigonometric functions <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>
                  
<apply><sin/><ci>x</ci></apply>
               
                  
<apply><sin/>
  <apply><plus/>
    <apply><cos/><ci>x</ci></apply>
    <apply><power/><ci>x</ci><cn>3</cn></apply>
  </apply>
</apply>
               
Common inverses of trigonometric functions <arcsin/>, <arccos/>, <arctan/>, <arcsec/>, <arccsc/>, <arccot/>
                  
<apply><arcsin/><ci>x</ci></apply>
               
                  
<mrow>
 <mi>arcsin</mi>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
                  
<mrow>
 <msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
Common hyperbolic functions <sinh/>, <cosh/>, <tanh/>, <sech/>, <csch/>, <coth/>
                  
<apply><sinh/><ci>x</ci></apply>
               
Common inverses of hyperbolic functions <arcsinh/>, <arccosh/>, <arctanh/>, <arcsech/>, <arccsch/>, <arccoth/>
                  
<apply><arcsinh/><ci>x</ci></apply>
               
                  
<mrow>
 <mi>arcsinh</mi>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
                  
<mrow>
 <msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
Exponential <exp/>
                  
<apply><exp/><ci>x</ci></apply>
               
Natural Logarithm <ln/>
                  
<apply><ln/><ci>a</ci></apply>
               
Logarithm <log/> , <logbase>
                  
<apply><log/>
  <logbase><cn>3</cn></logbase>
  <ci>x</ci>
</apply>
               
                  
<apply><log/><ci>x</ci></apply>
               
                  <apply><plus/>
  <apply>
    <log/>
    <logbase><cn>2</cn></logbase>
    <ci>x</ci>
  </apply>
  <apply>
    <log/>
    <ci>y</ci>
  </apply>
</apply>


               
                  <apply>
  <csymbol cd="arith1">plus</csymbol>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <cn>2</cn>
    <ci>x</ci>
  </apply>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <cn>10</cn>
    <ci>y</ci>
  </apply>
</apply>
               
Statistics Mean <mean/>
                  
<apply><mean/>
  <cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn>
</apply>
               
                  
<apply><mean/><ci>X</ci></apply>
               
Standard Deviation <sdev/>
                  
<apply><sdev/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
                  
<apply><sdev/>
  <ci type="discrete_random_variable">X</ci>
</apply>
               
Variance <variance/>
                  
<apply><variance/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
                  
<apply><variance/>
  <ci type="discrete_random_variable"> X</ci>
</apply>
               
Median <median/>
                  
<apply><median/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
Mode <mode/>
                  
<apply><mode/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
Moment <moment/>, <momentabout>
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><mean/></momentabout>
  <cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>
</apply>
               
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><ci>p</ci></momentabout>
  <ci>X</ci>
</apply>
               
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><ci>p</ci></momentabout>
  <ci>X</ci>
</apply>
               
                  
<apply><csymbol cd="s_dist1">moment</csymbol>
  <cn>3</cn>
  <ci>p</ci>
  <ci>X</ci>
</apply>
               
Linear Algebra Vector <vector>
                  
<vector>
  <apply><plus/><ci>x</ci><ci>y</ci></apply>
  <cn>3</cn>
  <cn>7</cn>
</vector>
               
Matrix <matrix>
                  
<matrix>
  <bvar><ci type="integer">i</ci></bvar>
  <bvar><ci type="integer">j</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/>
        <ci>i</ci>
        <interval><ci>1</ci><ci>5</ci></interval>
      </apply>
      <apply><in/>
        <ci>j</ci>
        <interval><ci>5</ci><ci>9</ci></interval>
      </apply>
    </apply>
  </condition>
  <apply><power/><ci>i</ci><ci>j</ci></apply>
</matrix>
               

Matrix row <matrixrow>

Determinant <determinant/>
                  
<apply><determinant/>
  <ci type="matrix">A</ci>
</apply>
               
Transpose <transpose/>
                  
<apply><transpose/>
  <ci type="matrix">A</ci>
</apply>
               
Selector <selector/>
                  
<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>
               
                  
<apply><eq/>
  <apply><selector/>
    <matrix>
      <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
      <matrixrow><cn>3</cn><cn>4</cn></matrixrow>
    </matrix>
    <cn>1</cn>
  </apply>
  <matrix>
    <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
  </matrix>
</apply>
               
Vector product <vectorproduct/>
                  
<apply><eq/>
  <apply><vectorproduct/>
    <ci type="vector"> A </ci>
    <ci type="vector"> B </ci>
 </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><sin/><ci>&#x3b8;</ci></apply>
    <ci type="vector"> N </ci>
  </apply>
</apply>
               
Scalar product <scalarproduct/>
                  
<apply><eq/>
  <apply><scalarproduct/>
    <ci type="vector">A</ci>
    <ci type="vector">B</ci>
  </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><cos/><ci>&#x3b8;</ci></apply>
  </apply>
</apply>
               
Outer product <outerproduct/>
                  
<apply><outerproduct/>
  <ci type="vector">A</ci>
  <ci type="vector">B</ci>
</apply>
               
Constant and Symbol Elements integers <integers/>
                  
<apply><in/>
  <cn type="integer"> 42 </cn>
  <integers/>
</apply>
               
reals <reals/>
                  
<apply><in/>
  <cn type="real"> 44.997</cn>
  <reals/>
</apply>
               
Rational Numbers <rationals/>
                  
<apply><in/>
  <cn type="rational"> 22 <sep/>7</cn>
  <rationals/>
</apply>
               
Natural Numbers <naturalnumbers/>
                  
<apply><in/>
  <cn type="integer">1729</cn>
  <naturalnumbers/>
</apply>
               
complexes <complexes/>
                  
<apply><in/>
  <cn type="complex-cartesian">17<sep/>29</cn>
  <complexes/>
</apply>
               
primes <primes/>
                  
<apply><in/>
  <cn type="integer">17</cn>
  <primes/>
</apply>
               
Exponential e <exponentiale/>
                  
<apply><eq/>
  <apply><ln/><exponentiale/></apply>
  <cn>1</cn>
</apply>
               
Imaginary i <imaginaryi/>
                  
<apply><eq/>
  <apply><power/><imaginaryi/><cn>2</cn></apply>
  <cn>-1</cn>
</apply>
               
Not A Number <notanumber/>
                  
<apply><eq/>
  <apply><divide/><cn>0</cn><cn>0</cn></apply>
  <notanumber/>
</apply>
               
True <true/>
                  
<apply><eq/>
  <apply><or/>
    <true/>
     <ci type="boolean">P</ci>
  </apply>
  <true/>
</apply>
               
False <false/>
                  
<apply><eq/>
  <apply><and/>
    <false/>
    <ci type="boolean">P</ci>
  </apply>
  <false/>
</apply>
               
Empty Set <emptyset/>
                  
<apply><neq/>
  <integers/>
  <emptyset/>
</apply>
               
pi <pi/>
                  
<apply><approx/>
  <pi/>
  <cn type="rational">22<sep/>7</cn>
</apply>
               
Euler gamma <eulergamma/>
                  
<apply><approx/>
  <eulergamma/>
  <cn>0.5772156649</cn>
</apply>
               
infinity <infinity/>
                  <infinity/>
               
Deprecated Content Elements

Declare <declare>

Relation <reln>

Relation <fn>

The Strict Content MathML Transformation


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4