<cn>
Rendering <cn>
,<sep/>
-Represented Numbers
Strict uses of <cn>
<cn type="hexdouble">7F800000</cn>Non-Strict uses of
<cn>
<cn base="16">7FE0</cn>
<cn base="1000">10F</cn>
<cn type="rational">22<sep/>7</cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>Rewrite: cn sep
<cn type="rational" base="b">n<sep/>d</cn>
<apply><csymbol cd="nums1">rational</csymbol> <cn type="integer" base="b">n</cn> <cn type="integer" base="b">d</cn> </apply>Rewrite: cn based_integer
<cn type="integer" base="16">FF60</cn>
<apply><csymbol cd="nums1">based_integer</csymbol> <cn type="integer">16</cn> <cs>FF60</cs> </apply>Rewrite: cn constant
<cn type="constant">c</cn>
<csymbol cd="nums1">c2</csymbol>Rewrite: cn presentation mathml
<cn type="rational"><mi>P</mi><sep/><mi>Q</mi></cn>
<apply><csymbol cd="nums1">rational</csymbol> <semantics> <ci>p</ci> <annotation-xml encoding="MathML-Presentation"> <mi>P</mi> </annotation-xml> </semantics> <semantics> <ci>q</ci> <annotation-xml encoding="MathML-Presentation"> <mi>Q</mi> </annotation-xml> </semantics> </apply>Content Identifiers
<ci>
<ci>x</ci>Strict uses of
<ci>
<ci type="integer">n</ci>
<semantics> <ci>n</ci> <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content"> <csymbol cd="mathmltypes">integer_type</csymbol> </annotation-xml> </semantics>Non-Strict uses of
<ci>
Rewrite: ci type annotation
<ci type="T">n</ci>
<semantics> <ci>n</ci> <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content"> <ci>T</ci> </annotation-xml> </semantics>Rewrite: ci presentation mathml
<ci><mi>P</mi></ci>
<semantics> <ci>p</ci> <annotation-xml encoding="MathML-Presentation"> <mi>P</mi> </annotation-xml> </semantics>
<ci> <msup><mi>C</mi><mn>2</mn></msup> </ci>
<semantics> <ci>C2</ci> <annotation-xml encoding="MathML-Presentation"> <msup><mi>C</mi><mn>2</mn></msup> </annotation-xml> </semantics>Rendering Content Identifiers
<ci type="vector">V</ci>Content Symbols
<csymbol>
Strict uses of <csymbol>
Non-Strict uses of <csymbol>
Rewrite: csymbol type annotation
<csymbol type="T">symbolname</csymbol>
<semantics> <csymbol>symbolname</csymbol> <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content"> <ci>T</ci> </annotation-xml> </semantics>Rendering Symbols String Literals
<cs>
<set> <cs>A</cs><cs>B</cs><cs> </cs> </set>Function Application
<apply>
Strict Content MathML
<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol> <ci>x</ci> <ci>y</ci> <ci>z</ci> </apply>
<apply><csymbol cd="arith1">plus</csymbol> <apply><csymbol cd="arith1">times</csymbol> <ci>a</ci> <ci>x</ci> </apply> <ci>b</ci> </apply>
<apply><csymbol cd="arith1">times</csymbol> <apply><csymbol cd="arith1">plus</csymbol> <ci>F</ci> <ci>G</ci> </apply> <ci>x</ci> </apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>
<apply> <apply><csymbol cd="arith1">plus</csymbol> <ci>F</ci> <ci>G</ci> </apply> <ci>x</ci> </apply>Rendering Applications
<apply><ci>f</ci> <ci>a1</ci> <ci>a2</ci> <ci>...</ci> <ci>an</ci> </apply>
<apply><ci>op</ci> <bvar><ci>x</ci></bvar> <domainofapplication><ci>d</ci></domainofapplication> <ci>expression-in-x</ci> </apply>Bindings and Bound Variables
<bind>
and <bvar>
Bindings
Bound Variables
<bind><csymbol cd="quant1">forall</csymbol> <bvar><ci id="var-x">x</ci></bvar> <apply><csymbol cd="relation1">lt</csymbol> <ci xref="var-x">x</ci> <cn>1</cn> </apply> </bind>
<bind><csymbol cd="quant1">forall</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="relation1">eq</csymbol> <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply> <apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply> </apply> </bind>Renaming Bound Variables Rendering Binding Constructions
<bind><ci>b</ci> <bvar><ci>x1</ci></bvar> <bvar><ci>...</ci></bvar> <bvar><ci>xn</ci></bvar> <ci>s</ci> </bind>Structure Sharing
<share>
<apply><ci>f</ci> <apply><ci>f</ci> <apply><ci>f</ci> <ci>a</ci> <ci>a</ci> </apply> <apply><ci>f</ci> <ci>a</ci> <ci>a</ci> </apply> </apply> <apply><ci>f</ci> <apply><ci>f</ci> <ci>a</ci> <ci>a</ci> </apply> <apply><ci>f</ci> <ci>a</ci> <ci>a</ci> </apply> </apply> </apply>
<apply><ci>f</ci> <apply id="t1"><ci>f</ci> <apply id="t11"><ci>f</ci> <ci>a</ci> <ci>a</ci> </apply> <share src="#t11"/> </apply> <share src="#t1"/> </apply>An Acyclicity Constraint
<bind id="outer"><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <apply><ci>f</ci> <bind id="inner"><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <share id="copy" src="#orig"/> </bind> <apply id="orig"><ci>g</ci><ci>x</ci></apply> </apply> </bind>Attribution via
semantics
Error Markup <cerror>
<cerror> <csymbol cd="aritherror">DivisionByZero</csymbol> <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply> </cerror>
<apply><csymbol cd="relation1">eq</csymbol> <cerror> <csymbol cd="aritherror">DivisionByZero</csymbol> <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply> </cerror> <cn>0</cn> </apply>
<cerror> <csymbol cd="aritherror">DivisionByZero</csymbol> <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply> </cerror>
<cerror> <csymbol cd="error">Illegal bound variable</csymbol> <cs> <bvar><plus/></bvar> </cs> </cerror>Encoded Bytes
<cbytes>
Content MathML for Specific Structures Container Markup Container Markup for Constructor Symbols
<set><ci>a</ci><ci>b</ci><ci>c</ci></set>
<apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>
<set> <bvar><ci>x</ci></bvar> <domainofapplication><integers/></domainofapplication> <apply><times/><cn>2</cn><ci>x</ci></apply> </set>
<apply><csymbol cd="set1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="arith1">times</csymbol> <cn>2</cn> <ci>x</ci> </apply> </bind> <csymbol cd="setname1">Z</csymbol> </apply>Container Markup for Binding Constructors
<lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>
<bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar><ci>x</ci> </bind>Bindings with
<apply>
<apply><forall/> <bvar><ci>x</ci></bvar> <apply><geq/><ci>x</ci><ci>x</ci></apply> </apply>
<bind><csymbol cd="logic1">forall</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply> </bind>
<apply><sum/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>100</cn></uplimit> <apply><power/><ci>x</ci><ci>i</ci></apply> </apply>
<apply><csymbol cd="arith1">sum</csymbol> <apply><csymbol cd="interval1">integer_interval</csymbol> <cn>0</cn> <cn>100</cn> </apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>i</ci></bvar> <apply><csymbol cd="arith1">power</csymbol> <ci>x</ci> <ci>i</ci> </apply> </bind> </apply>Qualifiers Uses of
<domainofapplication>
, <interval>
, <condition>
, <lowlimit>
and <uplimit>
<apply><int/> <domainofapplication> <ci type="set">C</ci> </domainofapplication> <ci type="function">f</ci> </apply>
<apply><int/> <bvar><ci>x</ci></bvar> <interval><cn>0</cn><cn>1</cn></interval> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>
<apply><int/> <bvar><ci>x</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>1</cn></uplimit> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>
<apply><int/> <bvar><ci>x</ci></bvar> <condition> <apply><and/> <apply><leq/><cn>0</cn><ci>x</ci></apply> <apply><leq/><ci>x</ci><cn>1</cn></apply> </apply> </condition> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>
<apply><int/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <domainofapplication> <set> <bvar><ci>t</ci></bvar> <bvar><ci>u</ci></bvar> <condition> <apply><and/> <apply><leq/><cn>0</cn><ci>t</ci></apply> <apply><leq/><ci>t</ci><cn>1</cn></apply> <apply><leq/><cn>0</cn><ci>u</ci></apply> <apply><leq/><ci>u</ci><cn>1</cn></apply> </apply> </condition> <list><ci>t</ci><ci>u</ci></list> </set> </domainofapplication> <apply><times/> <apply><power/><ci>x</ci><cn>2</cn></apply> <apply><power/><ci>y</ci><cn>3</cn></apply> </apply> </apply>Rewrite: interval qualifier
<apply><ci>H</ci> <bvar><ci>x</ci></bvar> <lowlimit><ci>a</ci></lowlimit> <uplimit><ci>b</ci></uplimit> <ci>C</ci> </apply>
<apply><ci>H</ci> <bvar><ci>x</ci></bvar> <domainofapplication> <apply><csymbol cd="interval1">interval</csymbol> <ci>a</ci> <ci>b</ci> </apply> </domainofapplication> <ci>C</ci> </apply>Rewrite: condition Rewrite: restriction
<apply><ci>F</ci> <domainofapplication> <ci>C</ci> </domainofapplication> <ci>a1</ci> <ci>an</ci> </apply>
<apply> <apply><csymbol cd="fns1">restriction</csymbol> <ci>F</ci> <ci>C</ci> </apply> <ci>a1</ci> <ci>an</ci> </apply>Rewrite: apply bvar domainofapplication Uses of
<degree>
<apply><diff/> <bvar> <ci>x</ci> <degree><cn>2</cn></degree> </bvar> <apply><power/><ci>x</ci><cn>4</cn></apply> </apply>Uses of
<momentabout>
and <logbase>
Operator Classes Rewrite: element
<plus/>
<csymbol cd="arith1">plus</csymbol>N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor) Schema Patterns Rewriting to Strict Content MathML Rewrite: n-ary domainofapplication
<apply><union/> <bvar><ci>x</ci></bvar> <domainofapplication><ci>D</ci></domainofapplication> <ci>expression-in-x</ci> </apply>
<apply><csymbol cd="fns2">apply_to_list</csymbol> <csymbol cd="set1">union</csymbol> <apply><csymbol cd="list1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> <ci>D</ci> </apply> </apply>N-ary Constructors for set and list (class nary-setlist-constructor) Schema Patterns Rewriting to Strict Content MathML Rewrite: n-ary setlist domainofapplication
<set> <bvar><ci>x</ci></bvar> <domainofapplication><ci>D</ci></domainofapplication> <ci>expression-in-x</ci> </set>
<apply><csymbol cd="set1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> <ci>D</ci> </apply>N-ary Relations (classes nary-reln, nary-set-reln) Schema Patterns Rewriting to Strict Content MathML Rewrite: n-ary relations
<apply><lt/> <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci> </apply>
<apply><csymbol cd="fns2">predicate_on_list</csymbol> <csymbol cd="reln1">lt</csymbol> <apply><csymbol cd="list1">list</csymbol> <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci> </apply> </apply>Rewrite: n-ary relations bvar
<apply><lt/> <bvar><ci>x</ci></bvar> <domainofapplication><ci>R</ci></domainofapplication> <ci>expression-in-x</ci> </apply>
<apply><csymbol cd="fns2">predicate_on_list</csymbol> <csymbol cd="reln1">lt</csymbol> <apply><csymbol cd="list1">map</csymbol> <ci>R</ci> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> </apply> </apply>N-ary/Unary Operators (classes nary-minmax, nary-stats) Schema Patterns Rewriting to Strict Content MathML Rewrite: n-ary unary set
<apply><max/><ci>a1</ci><ci>a2</ci><ci>an</ci></apply>
<apply><csymbol cd="minmax1">max</csymbol> <apply><csymbol cd="set1">set</csymbol> <ci>a1</ci><ci>a2</ci><ci>an</ci> </apply> </apply>Rewrite: n-ary unary domainofapplication
<apply><max/> <bvar><ci>x</ci></bvar> <domainofapplication><ci>D</ci></domainofapplication> <ci>expression-in-x</ci> </apply>
<apply><csymbol cd="minmax1">max</csymbol> <apply><csymbol cd="set1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> <ci>D</ci> </apply> </apply>Rewrite: n-ary unary single
<apply><max/><ci>a</ci></apply>
<apply><csymbol cd="minmax1">max</csymbol> <ci>a</ci> </apply>Binary Operators (classes binary-arith, binary-logical, binary-reln, binary-linalg, binary-set) Schema Patterns Unary Operators (classes unary-arith, unary-linalg, unary-functional, unary-set, unary-elementary, unary-veccalc) Schema Patterns Constants (classes constant-arith, constant-set) Schema Patterns Quantifiers (class quantifier) Schema Patterns Rewriting to Strict Content MathML Rewrite: quantifier
<apply><exists/> <bvar><ci>x</ci></bvar> <domainofapplication><ci>D</ci></domainofapplication> <ci>expression-in-x</ci> </apply>
<bind><csymbol cd="quant1">exists</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="logic1">and</csymbol> <apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>D</ci></apply> <ci>expression-in-x</ci> </apply> </bind>Other Operators (classes lambda, interval, int, diff partialdiff, sum, product, limit) Schema Patterns Non-strict Attributes Rewrite: attributes
<ci class="foo" xmlns:other="http://example.com" other:att="bla">x</ci>
<semantics> <ci>x</ci> <annotation cd="mathmlattr" name="class" encoding="text/plain">foo</annotation> <annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content"> <apply><csymbol cd="mathmlattr">foreign_attribute</csymbol> <cs>http://example.com</cs> <cs>other</cs> <cs>att</cs> <cs>bla</cs> </apply> </annotation-xml> </semantics>Content MathML for Specific Operators and Constants Functions and Inverses Interval
<interval>
<interval closure="open"><ci>x</ci><cn>1</cn></interval>
<interval closure="closed"><cn>0</cn><cn>1</cn></interval>
<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>
<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>Inverse
<inverse>
<apply><inverse/> <ci> f </ci> </apply>
<apply> <apply><inverse/><ci type="matrix">A</ci></apply> <ci>a</ci> </apply>Lambda
<lambda>
<lambda> <bvar><ci> x </ci></bvar> <domainofapplication><integers/></domainofapplication> <apply><sin/><ci> x </ci></apply> </lambda>
<lambda> <domainofapplication><integers/></domainofapplication> <sin/> </lambda>
<lambda> <bvar><ci>x</ci></bvar> <apply><sin/> <apply><plus/><ci>x</ci><cn>1</cn></apply> </apply> </lambda>Rewrite: lambda
<lambda> <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar> <ci>expression-in-x1-xn</ci> </lambda>
<bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar> <ci>expression-in-x1-xn</ci> </bind>Rewrite: lambda domainofapplication
<lambda> <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar> <domainofapplication><ci>D</ci></domainofapplication> <ci>expression-in-x1-xn</ci> </lambda>
<apply><csymbol cd="fns1">restriction</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar> <ci>expression-in-x1-xn</ci> </bind> <ci>D</ci> </apply>Function composition
<compose/>
<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>
<apply><eq/> <apply> <apply><compose/><ci>f</ci><ci>g</ci></apply> <ci>x</ci> </apply> <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply> </apply>Identity function
<ident/>
<apply><eq/> <apply><compose/> <ci type="function">f</ci> <apply><inverse/> <ci type="function">f</ci> </apply> </apply> <ident/> </apply>Domain
<domain/>
<apply><eq/> <apply><domain/><ci>f</ci></apply> <reals/> </apply>codomain
<codomain/>
<apply><eq/> <apply><codomain/><ci>f</ci></apply> <rationals/> </apply>Image
<image/>
<apply><eq/> <apply><image/><sin/></apply> <interval><cn>-1</cn><cn> 1</cn></interval> </apply>Piecewise declaration
<piecewise>
, <piece>
, <otherwise>
<piecewise> <piece> <apply><minus/><ci>x</ci></apply> <apply><lt/><ci>x</ci><cn>0</cn></apply> </piece> <piece> <cn>0</cn> <apply><eq/><ci>x</ci><cn>0</cn></apply> </piece> <piece> <ci>x</ci> <apply><gt/><ci>x</ci><cn>0</cn></apply> </piece> </piecewise>
<piecewise> <piece> <cn>0</cn> <apply><lt/><ci>x</ci><cn>0</cn></apply> </piece> <piece> <cn>1</cn> <apply><gt/><ci>x</ci><cn>1</cn></apply> </piece> <otherwise> <ci>x</ci> </otherwise> </piecewise>
<apply><csymbol cd="piece1">piecewise</csymbol> <apply><csymbol cd="piece1">piece</csymbol> <cn>0</cn> <apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply> </apply> <apply><csymbol cd="piece1">piece</csymbol> <cn>1</cn> <apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply> </apply> <apply><csymbol cd="piece1">otherwise</csymbol> <ci>x</ci> </apply> </apply>Arithmetic, Algebra and Logic Quotient
<quotient/>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>Factorial
<factorial/>
<apply><factorial/><ci>n</ci></apply>Division
<divide/>
<apply><divide/> <ci>a</ci> <ci>b</ci> </apply>Maximum
<max/>
<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
<apply><max/> <bvar><ci>y</ci></bvar> <condition> <apply><in/> <ci>y</ci> <interval><cn>0</cn><cn>1</cn></interval> </apply> </condition> <apply><power/><ci>y</ci><cn>3</cn></apply> </apply>Minimum
<min/>
<apply><min/><ci>a</ci><ci>b</ci></apply>
<apply><min/> <bvar><ci>x</ci></bvar> <condition> <apply><notin/><ci>x</ci><ci type="set">B</ci></apply> </condition> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>Subtraction
<minus/>
<apply><minus/><cn>3</cn></apply>
<apply><minus/><ci>x</ci><ci>y</ci></apply>Addition
<plus/>
<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>Exponentiation
<power/>
<apply><power/><ci>x</ci><cn>3</cn></apply>Remainder
<rem/>
<apply><rem/><ci> a </ci><ci> b </ci></apply>Multiplication
<times/>
<apply><times/><ci>a</ci><ci>b</ci></apply>Root
<root/>
<apply><root/> <degree><ci type="integer">n</ci></degree> <ci>a</ci> </apply>
<apply><root/><ci>x</ci></apply>
<apply><csymbol cd="arith1">root</csymbol> <ci>x</ci> <cn type="integer">2</cn> </apply>
<apply><root/> <degree><ci type="integer">n</ci></degree> <ci>a</ci> </apply>
<apply><csymbol cd="arith1">root</csymbol> <ci>a</ci> <cn type="integer">n</cn> </apply>Greatest common divisor
<gcd/>
<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>And
<and/>
<apply><and/><ci>a</ci><ci>b</ci></apply>
<apply><and/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><ci>n</ci></uplimit> <apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn></apply> </apply>
<apply><csymbol cd="fns2">apply_to_list</csymbol> <csymbol cd="logic1">and</csymbol> <apply><csymbol cd="list1">map</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>i</ci></bvar> <apply><csymbol cd="relation1">gt</csymbol> <apply><csymbol cd="linalg1">vector_selector</csymbol> <ci>i</ci> <ci>a</ci> </apply> <cn>0</cn> </apply> </bind> <apply><csymbol cd="interval1">integer_interval</csymbol> <cn type="integer">0</cn> <ci>n</ci> </apply> </apply> </apply>Or
<or/>
<apply><or/><ci>a</ci><ci>b</ci></apply>Exclusive Or
<xor/>
<apply><xor/><ci>a</ci><ci>b</ci></apply>Not
<not/>
<apply><not/><ci>a</ci></apply>Implies
<implies/>
<apply><implies/><ci>A</ci><ci>B</ci></apply>Universal quantifier
<forall/>
<bind><forall/> <bvar><ci>x</ci></bvar> <apply><eq/> <apply><minus/><ci>x</ci><ci>x</ci></apply> <cn>0</cn> </apply> </bind>
<bind><forall/> <bvar><ci>p</ci></bvar> <bvar><ci>q</ci></bvar> <condition> <apply><and/> <apply><in/><ci>p</ci><rationals/></apply> <apply><in/><ci>q</ci><rationals/></apply> <apply><lt/><ci>p</ci><ci>q</ci></apply> </apply> </condition> <apply><lt/> <ci>p</ci> <apply><power/><ci>q</ci><cn>2</cn></apply> </apply> </bind>
<bind><csymbol cd="quant1">forall</csymbol> <bvar><ci>p</ci></bvar> <bvar><ci>q</ci></bvar> <apply><csymbol cd="logic1">implies</csymbol> <apply><csymbol cd="logic1">and</csymbol> <apply><csymbol cd="set1">in</csymbol> <ci>p</ci> <csymbol cd="setname1">Q</csymbol> </apply> <apply><csymbol cd="set1">in</csymbol> <ci>q</ci> <csymbol cd="setname1">Q</csymbol> </apply> <apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply> </apply> <apply><csymbol cd="relation1">lt</csymbol> <ci>p</ci> <apply><csymbol cd="arith1">power</csymbol> <ci>q</ci> <cn>2</cn> </apply> </apply> </apply> </bind>Existential quantifier
<exists/>
<bind><exists/> <bvar><ci>x</ci></bvar> <apply><eq/> <apply><ci>f</ci><ci>x</ci></apply> <cn>0</cn> </apply> </bind>
<apply><exists/> <bvar><ci>x</ci></bvar> <domainofapplication> <integers/> </domainofapplication> <apply><eq/> <apply><ci>f</ci><ci>x</ci></apply> <cn>0</cn> </apply> </apply>
<bind><csymbol cd="quant1">exists</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="logic1">and</csymbol> <apply><csymbol cd="set1">in</csymbol> <ci>x</ci> <csymbol cd="setname1">Z</csymbol> </apply> <apply><csymbol cd="relation1">eq</csymbol> <apply><ci>f</ci><ci>x</ci></apply> <cn>0</cn> </apply> </apply> </bind>Absolute Value
<abs/>
<apply><abs/><ci>x</ci></apply>Complex conjugate
<conjugate/>
<apply><conjugate/> <apply><plus/> <ci>x</ci> <apply><times/><cn>ⅈ</cn><ci>y</ci></apply> </apply> </apply>Argument
<arg/>
<apply><arg/> <apply><plus/> <ci> x </ci> <apply><times/><imaginaryi/><ci>y</ci></apply> </apply> </apply>Real part
<real/>
<apply><real/> <apply><plus/> <ci>x</ci> <apply><times/><imaginaryi/><ci>y</ci></apply> </apply> </apply>Imaginary part
<imaginary/>
<apply><imaginary/> <apply><plus/> <ci>x</ci> <apply><times/><imaginaryi/><ci>y</ci></apply> </apply> </apply>Lowest common multiple
<lcm/>
<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>Floor
<floor/>
<apply><floor/><ci>a</ci></apply>Ceiling
<ceiling/>
<apply><ceiling/><ci>a</ci></apply>Relations Equals
<eq/>
<apply><eq/> <cn type="rational">2<sep/>4</cn> <cn type="rational">1<sep/>2</cn> </apply>Not Equals
<neq/>
<apply><neq/><cn>3</cn><cn>4</cn></apply>Greater than
<gt/>
<apply><gt/><cn>3</cn><cn>2</cn></apply>Less Than
<lt/>
<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>Greater Than or Equal
<geq/>
<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>
<apply><csymbol cd="fns2">predicate_on_list</csymbol> <csymbol cd="reln1">geq</csymbol> <apply><csymbol cd="list1">list</csymbol> <cn>4</cn><cn>3</cn><cn>3</cn> </apply> </apply>Less Than or Equal
<leq/>
<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>Equivalent
<equivalent/>
<apply><equivalent/> <ci>a</ci> <apply><not/><apply><not/><ci>a</ci></apply></apply> </apply>Approximately
<approx/>
<apply><approx/> <pi/> <cn type="rational">22<sep/>7</cn> </apply>Factor Of
<factorof/>
<apply><factorof/><ci>a</ci><ci>b</ci></apply>Calculus and Vector Calculus Integral
<int/>
<apply><eq/> <apply><int/><sin/></apply> <cos/> </apply>
<apply><int/> <interval><ci>a</ci><ci>b</ci></interval> <cos/> </apply>
<apply><int/> <bvar><ci>x</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>1</cn></uplimit> <apply><power/><ci>x</ci><cn>2</cn></apply> </apply>Rewrite: int
<apply><int/> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </apply>
<apply> <apply><csymbol cd="calculus1">int</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> </apply> <ci>x</ci> </apply>
<apply><int/> <bvar><ci>x</ci></bvar> <apply><cos/><ci>x</ci></apply> </apply>
<apply> <apply><csymbol cd="calculus1">int</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <apply><cos/><ci>x</ci></apply> </bind> </apply> <ci>x</ci> </apply>
<apply><int/> <domainofapplication><ci>C</ci></domainofapplication> <ci>f</ci> </apply>
<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>Rewrite: defint
<apply><int/> <bvar><ci>x</ci></bvar> <domainofapplication><ci>D</ci></domainofapplication> <ci>expression-in-x</ci> </apply>
<apply><csymbol cd="calculus1">defint</csymbol> <ci>D</ci> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> </apply>Rewrite: defint limits
<apply><int/> <bvar><ci>x</ci></bvar> <lowlimit><ci>a</ci></lowlimit> <uplimit><ci>b</ci></uplimit> <ci>expression-in-x</ci> </apply>
<apply><csymbol cd="calculus1">defint</csymbol> <apply><csymbol cd="interval1">oriented_interval</csymbol> <ci>a</ci> <ci>b</ci> </apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> </apply>
<bind><int/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <condition> <apply><and/> <apply><leq/><cn>0</cn><ci>x</ci></apply> <apply><leq/><ci>x</ci><cn>1</cn></apply> <apply><leq/><cn>0</cn><ci>y</ci></apply> <apply><leq/><ci>y</ci><cn>1</cn></apply> </apply> </condition> <apply><times/> <apply><power/><ci>x</ci><cn>2</cn></apply> <apply><power/><ci>y</ci><cn>3</cn></apply> </apply> </bind>
<apply><csymbol cd="calculus1">defint</csymbol> <apply><csymbol cd="set1">suchthat</csymbol> <apply><csymbol cd="set1">cartesianproduct</csymbol> <csymbol cd="setname1">R</csymbol> <csymbol cd="setname1">R</csymbol> </apply> <apply><csymbol cd="logic1">and</csymbol> <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply> <apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply> <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply> <apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply> </apply> <bind><csymbol cd="fns11">lambda</csymbol> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <apply><csymbol cd="arith1">times</csymbol> <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply> <apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply> </apply> </bind> </apply> </apply>Differentiation
<diff/>
<apply><diff/><ci>f</ci></apply>
<apply><eq/> <apply><diff/> <bvar><ci>x</ci></bvar> <apply><sin/><ci>x</ci></apply> </apply> <apply><cos/><ci>x</ci></apply> </apply>
<apply><diff/> <bvar><ci>x</ci><degree><cn>2</cn></degree></bvar> <apply><power/><ci>x</ci><cn>4</cn></apply> </apply>Rewrite: diff
<apply><diff/> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </apply>
<apply> <apply><csymbol cd="calculus1">diff</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>E</ci> </bind> </apply> <ci>x</ci> </apply>
<apply><diff/> <bvar><ci>x</ci></bvar> <apply><sin/><ci>x</ci></apply> </apply>
<apply> <apply><csymbol cd="calculus1">diff</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply> </bind> </apply> <ci>x</ci> </apply>Rewrite: nthdiff
<apply><diff/> <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar> <ci>expression-in-x</ci> </apply>
<apply> <apply><csymbol cd="calculus1">nthdiff</csymbol> <ci>n</ci> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> </apply> <ci>x</ci> </apply>
<apply><diff/> <bvar><degree><cn>2</cn></degree><ci>x</ci></bvar> <apply><sin/><ci>x</ci></apply> </apply>
<apply> <apply><csymbol cd="calculus1">nthdiff</csymbol> <cn>2</cn> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply> </bind> </apply> <ci>x</ci> </apply>Partial Differentiation
<partialdiff/>
<apply><partialdiff/> <list><cn>1</cn><cn>1</cn><cn>3</cn></list> <ci type="function">f</ci> </apply>
<apply><partialdiff/> <list><cn>1</cn><cn>1</cn><cn>3</cn></list> <lambda> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>z</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply> </lambda> </apply>
<apply><partialdiff/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply> </apply>
<apply><partialdiff/> <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar> <bvar><ci>y</ci><degree><ci>n</ci></degree></bvar> <degree><ci>k</ci></degree> <apply><ci type="function">f</ci> <ci>x</ci> <ci>y</ci> </apply> </apply>Rewrite: partialdiffdegree
<apply><partialdiff/> <bvar><ci>x1</ci><degree><ci>n1</ci></degree></bvar> <bvar><ci>xk</ci><degree><ci>nk</ci></degree></bvar> <degree><ci>total-n1-nk</ci></degree> <ci>expression-in-x1-xk</ci> </apply>
<apply> <apply><csymbol cd="calculus1">partialdiffdegree</csymbol> <apply><csymbol cd="list1">list</csymbol> <ci>n1</ci> <ci>nk</ci> </apply> <ci>total-n1-nk</ci> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x1</ci></bvar> <bvar><ci>xk</ci></bvar> <ci>expression-in-x1-xk</ci> </bind> </apply> <ci>x1</ci> <ci>xk</ci> </apply>
<apply><csymbol cd="arith1">plus</csymbol> <ci>n1</ci> <ci>nk</ci> </apply>
<apply><partialdiff/> <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar> <bvar><ci>y</ci><degree><ci>m</ci></degree></bvar> <apply><sin/> <apply><times/><ci>x</ci><ci>y</ci></apply> </apply> </apply>
<apply> <apply><csymbol cd="calculus1">partialdiffdegree</csymbol> <apply><csymbol cd="list1">list</csymbol> <ci>n</ci><ci>m</ci> </apply> <apply><csymbol cd="arith1">plus</csymbol> <ci>n</ci><ci>m</ci> </apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <apply><csymbol cd="transc1">sin</csymbol> <apply><csymbol cd="arith1">times</csymbol> <ci>x</ci><ci>y</ci> </apply> </apply> </bind> <ci>x</ci> <ci>y</ci> </apply> </apply>Divergence
<divergence/>
<apply><divergence/><ci>a</ci></apply>
<apply><divergence/> <ci type="vector">E</ci> </apply>
<apply><divergence/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>z</ci></bvar> <vector> <apply><plus/><ci>x</ci><ci>y</ci></apply> <apply><plus/><ci>x</ci><ci>z</ci></apply> <apply><plus/><ci>z</ci><ci>y</ci></apply> </vector> </apply>Gradient
<grad/>
<apply><grad/><ci type="function">f</ci></apply>
<apply><grad/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>z</ci></bvar> <apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply> </apply>Curl
<curl/>
<apply><curl/><ci>a</ci></apply>Laplacian
<laplacian/>
<apply><laplacian/><ci type="vector">E</ci></apply>
<apply><laplacian/> <bvar><ci>x</ci></bvar> <bvar><ci>y</ci></bvar> <bvar><ci>z</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci></apply> </apply>Theory of Sets Set
<set>
<set> <ci>a</ci><ci>b</ci><ci>c</ci> </set>
<set> <bvar><ci>x</ci></bvar> <condition> <apply><lt/><ci>x</ci><cn>5</cn></apply> </condition> <ci>x</ci> </set>
<set> <bvar><ci type="set">S</ci></bvar> <condition> <apply><in/><ci>S</ci><ci type="list">T</ci></apply> </condition> <ci>S</ci> </set>
<set> <bvar><ci> x </ci></bvar> <condition> <apply><and/> <apply><lt/><ci>x</ci><cn>5</cn></apply> <apply><in/><ci>x</ci><naturalnumbers/></apply> </apply> </condition> <ci>x</ci> </set>List
<list>
<list> <ci>a</ci><ci>b</ci><ci>c</ci> </list>
<list order="numeric"> <bvar><ci>x</ci></bvar> <condition> <apply><lt/><ci>x</ci><cn>5</cn></apply> </condition> </list>Union
<union/>
<apply><union/><ci>A</ci><ci>B</ci></apply>
<apply><union/> <bvar><ci type="set">S</ci></bvar> <domainofapplication> <ci type="list">L</ci> </domainofapplication> <ci type="set"> S</ci> </apply>Intersect
<intersect/>
<apply><intersect/> <ci type="set"> A </ci> <ci type="set"> B </ci> </apply>
<apply><intersect/> <bvar><ci type="set">S</ci></bvar> <domainofapplication><ci type="list">L</ci></domainofapplication> <ci type="set"> S </ci> </apply>Set inclusion
<in/>
<apply><in/><ci>a</ci><ci type="set">A</ci></apply>Set exclusion
<notin/>
<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>Subset
<subset/>
<apply><subset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>Proper Subset
<prsubset/>
<apply><prsubset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>Not Subset
<notsubset/>
<apply><notsubset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>Not Proper Subset
<notprsubset/>
<apply><notprsubset/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>Set Difference
<setdiff/>
<apply><setdiff/> <ci type="set">A</ci> <ci type="set">B</ci> </apply>Cardinality
<card/>
<apply><eq/> <apply><card/><ci>A</ci></apply> <cn>5</cn> </apply>Cartesian product
<cartesianproduct/>
<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>Sequences and Series Sum
<sum/>
<apply><sum/> <bvar><ci>x</ci></bvar> <lowlimit><ci>a</ci></lowlimit> <uplimit><ci>b</ci></uplimit> <apply><ci>f</ci><ci>x</ci></apply> </apply>
<apply><sum/> <bvar><ci>x</ci></bvar> <condition> <apply><in/><ci>x</ci><ci type="set">B</ci></apply> </condition> <apply><ci type="function">f</ci><ci>x</ci></apply> </apply>
<apply><sum/> <domainofapplication> <ci type="set">B</ci> </domainofapplication> <ci type="function">f</ci> </apply>
<apply><sum/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>100</cn></uplimit> <apply><power/><ci>x</ci><ci>i</ci></apply> </apply>
<apply><csymbol cd="arith1">sum</csymbol> <apply><csymbol cd="interval1">integer_interval</csymbol> <cn>0</cn> <cn>100</cn> </apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>i</ci></bvar> <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply> </bind> </apply>Product
<product/>
<apply><product/> <bvar><ci>x</ci></bvar> <lowlimit><ci>a</ci></lowlimit> <uplimit><ci>b</ci></uplimit> <apply><ci type="function">f</ci> <ci>x</ci> </apply> </apply>
<apply><product/> <bvar><ci>x</ci></bvar> <condition> <apply><in/> <ci>x</ci> <ci type="set">B</ci> </apply> </condition> <apply><ci>f</ci><ci>x</ci></apply> </apply>
<apply><product/> <bvar><ci>i</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <uplimit><cn>100</cn></uplimit> <apply><power/><ci>x</ci><ci>i</ci></apply> </apply>
<apply><csymbol cd="arith1">product</csymbol> <apply><csymbol cd="interval1">integer_interval</csymbol> <cn>0</cn> <cn>100</cn> </apply> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>i</ci></bvar> <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply> </bind> </apply>Limits
<limit/>
<apply><limit/> <bvar><ci>x</ci></bvar> <lowlimit><cn>0</cn></lowlimit> <apply><sin/><ci>x</ci></apply> </apply>
<apply><limit/> <bvar><ci>x</ci></bvar> <condition> <apply><tendsto/><ci>x</ci><cn>0</cn></apply> </condition> <apply><sin/><ci>x</ci></apply> </apply>
<apply><limit/> <bvar><ci>x</ci></bvar> <condition> <apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply> </condition> <apply><sin/><ci>x</ci></apply> </apply>Rewrite: limits condition
<apply><limit/> <bvar><ci>x</ci></bvar> <condition> <apply><tendsto/><ci>x</ci><cn>0</cn></apply> </condition> <ci>expression-in-x</ci> </apply>
<apply><csymbol cd="limit1">limit</csymbol> <cn>0</cn> <csymbol cd="limit1">null</csymbol> <bind><csymbol cd="fns1">lambda</csymbol> <bvar><ci>x</ci></bvar> <ci>expression-in-x</ci> </bind> </apply>Tends To
<tendsto/>
<apply><tendsto type="above"/> <apply><power/><ci>x</ci><cn>2</cn></apply> <apply><power/><ci>a</ci><cn>2</cn></apply> </apply>
<apply><tendsto/> <vector><ci>x</ci><ci>y</ci></vector> <vector> <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply> <apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply> </vector> </apply>Rewrite: tendsto
<tendsto/>
<semantics> <ci>tendsto</ci> <annotation-xml encoding="MathML-Content"> <tendsto/> </annotation-xml> </semantics>Elementary classical functions Common trigonometric functions
<sin/>
, <cos/>
, <tan/>
, <sec/>
, <csc/>
, <cot/>
<apply><sin/><ci>x</ci></apply>
<apply><sin/> <apply><plus/> <apply><cos/><ci>x</ci></apply> <apply><power/><ci>x</ci><cn>3</cn></apply> </apply> </apply>Common inverses of trigonometric functions
<arcsin/>
, <arccos/>
, <arctan/>
, <arcsec/>
, <arccsc/>
, <arccot/>
<apply><arcsin/><ci>x</ci></apply>
<mrow> <mi>arcsin</mi> <mo>⁡</mo> <mi>x</mi> </mrow>
<mrow> <msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup> <mo>⁡</mo> <mi>x</mi> </mrow>Common hyperbolic functions
<sinh/>
, <cosh/>
, <tanh/>
, <sech/>
, <csch/>
, <coth/>
<apply><sinh/><ci>x</ci></apply>Common inverses of hyperbolic functions
<arcsinh/>
, <arccosh/>
, <arctanh/>
, <arcsech/>
, <arccsch/>
, <arccoth/>
<apply><arcsinh/><ci>x</ci></apply>
<mrow> <mi>arcsinh</mi> <mo>⁡</mo> <mi>x</mi> </mrow>
<mrow> <msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup> <mo>⁡</mo> <mi>x</mi> </mrow>Exponential
<exp/>
<apply><exp/><ci>x</ci></apply>Natural Logarithm
<ln/>
<apply><ln/><ci>a</ci></apply>Logarithm
<log/>
, <logbase>
<apply><log/> <logbase><cn>3</cn></logbase> <ci>x</ci> </apply>
<apply><log/><ci>x</ci></apply>
<apply><plus/> <apply> <log/> <logbase><cn>2</cn></logbase> <ci>x</ci> </apply> <apply> <log/> <ci>y</ci> </apply> </apply>
<apply> <csymbol cd="arith1">plus</csymbol> <apply> <csymbol cd="transc1">log</csymbol> <cn>2</cn> <ci>x</ci> </apply> <apply> <csymbol cd="transc1">log</csymbol> <cn>10</cn> <ci>y</ci> </apply> </apply>Statistics Mean
<mean/>
<apply><mean/> <cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn> </apply>
<apply><mean/><ci>X</ci></apply>Standard Deviation
<sdev/>
<apply><sdev/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>
<apply><sdev/> <ci type="discrete_random_variable">X</ci> </apply>Variance
<variance/>
<apply><variance/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>
<apply><variance/> <ci type="discrete_random_variable"> X</ci> </apply>Median
<median/>
<apply><median/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>Mode
<mode/>
<apply><mode/> <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn> </apply>Moment
<moment/>
, <momentabout>
<apply><moment/> <degree><cn>3</cn></degree> <momentabout><mean/></momentabout> <cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn> </apply>
<apply><moment/> <degree><cn>3</cn></degree> <momentabout><ci>p</ci></momentabout> <ci>X</ci> </apply>
<apply><moment/> <degree><cn>3</cn></degree> <momentabout><ci>p</ci></momentabout> <ci>X</ci> </apply>
<apply><csymbol cd="s_dist1">moment</csymbol> <cn>3</cn> <ci>p</ci> <ci>X</ci> </apply>Linear Algebra Vector
<vector>
<vector> <apply><plus/><ci>x</ci><ci>y</ci></apply> <cn>3</cn> <cn>7</cn> </vector>Matrix
<matrix>
<matrix> <bvar><ci type="integer">i</ci></bvar> <bvar><ci type="integer">j</ci></bvar> <condition> <apply><and/> <apply><in/> <ci>i</ci> <interval><ci>1</ci><ci>5</ci></interval> </apply> <apply><in/> <ci>j</ci> <interval><ci>5</ci><ci>9</ci></interval> </apply> </apply> </condition> <apply><power/><ci>i</ci><ci>j</ci></apply> </matrix>Matrix row
<matrixrow>
Determinant <determinant/>
<apply><determinant/> <ci type="matrix">A</ci> </apply>Transpose
<transpose/>
<apply><transpose/> <ci type="matrix">A</ci> </apply>Selector
<selector/>
<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>
<apply><eq/> <apply><selector/> <matrix> <matrixrow><cn>1</cn><cn>2</cn></matrixrow> <matrixrow><cn>3</cn><cn>4</cn></matrixrow> </matrix> <cn>1</cn> </apply> <matrix> <matrixrow><cn>1</cn><cn>2</cn></matrixrow> </matrix> </apply>Vector product
<vectorproduct/>
<apply><eq/> <apply><vectorproduct/> <ci type="vector"> A </ci> <ci type="vector"> B </ci> </apply> <apply><times/> <ci>a</ci> <ci>b</ci> <apply><sin/><ci>θ</ci></apply> <ci type="vector"> N </ci> </apply> </apply>Scalar product
<scalarproduct/>
<apply><eq/> <apply><scalarproduct/> <ci type="vector">A</ci> <ci type="vector">B</ci> </apply> <apply><times/> <ci>a</ci> <ci>b</ci> <apply><cos/><ci>θ</ci></apply> </apply> </apply>Outer product
<outerproduct/>
<apply><outerproduct/> <ci type="vector">A</ci> <ci type="vector">B</ci> </apply>Constant and Symbol Elements integers
<integers/>
<apply><in/> <cn type="integer"> 42 </cn> <integers/> </apply>reals
<reals/>
<apply><in/> <cn type="real"> 44.997</cn> <reals/> </apply>Rational Numbers
<rationals/>
<apply><in/> <cn type="rational"> 22 <sep/>7</cn> <rationals/> </apply>Natural Numbers
<naturalnumbers/>
<apply><in/> <cn type="integer">1729</cn> <naturalnumbers/> </apply>complexes
<complexes/>
<apply><in/> <cn type="complex-cartesian">17<sep/>29</cn> <complexes/> </apply>primes
<primes/>
<apply><in/> <cn type="integer">17</cn> <primes/> </apply>Exponential e
<exponentiale/>
<apply><eq/> <apply><ln/><exponentiale/></apply> <cn>1</cn> </apply>Imaginary i
<imaginaryi/>
<apply><eq/> <apply><power/><imaginaryi/><cn>2</cn></apply> <cn>-1</cn> </apply>Not A Number
<notanumber/>
<apply><eq/> <apply><divide/><cn>0</cn><cn>0</cn></apply> <notanumber/> </apply>True
<true/>
<apply><eq/> <apply><or/> <true/> <ci type="boolean">P</ci> </apply> <true/> </apply>False
<false/>
<apply><eq/> <apply><and/> <false/> <ci type="boolean">P</ci> </apply> <false/> </apply>Empty Set
<emptyset/>
<apply><neq/> <integers/> <emptyset/> </apply>pi
<pi/>
<apply><approx/> <pi/> <cn type="rational">22<sep/>7</cn> </apply>Euler gamma
<eulergamma/>
<apply><approx/> <eulergamma/> <cn>0.5772156649</cn> </apply>infinity
<infinity/>
<infinity/>Deprecated Content Elements Declare
<declare>
Relation <reln>
Relation <fn>
The Strict Content MathML Transformation
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4