This document is adapted from the Interactive Charts section of the Altair Example Gallery.
Our first step is to set up our environment:
Interactive AverageDataThe plot below uses an interval selection, which causes the chart to include an interactive brush (shown in grey). The brush selection parameterizes the red guideline, which visualizes the average value within the selected interval.
weather <- vega_data$seattle_weather()
glimpse(weather)
## Rows: 1,461
## Columns: 6
## $ date <dttm> 2012-01-01, 2012-01-02, 2012-01-03, 2012-01-04, 2012-01…
## $ precipitation <dbl> 0.0, 10.9, 0.8, 20.3, 1.3, 2.5, 0.0, 0.0, 4.3, 1.0, 0.0,…
## $ temp_max <dbl> 12.8, 10.6, 11.7, 12.2, 8.9, 4.4, 7.2, 10.0, 9.4, 6.1, 6…
## $ temp_min <dbl> 5.0, 2.8, 7.2, 5.6, 2.8, 2.2, 2.8, 2.8, 5.0, 0.6, -1.1, …
## $ wind <dbl> 4.7, 4.5, 2.3, 4.7, 6.1, 2.2, 2.3, 2.0, 3.4, 3.4, 5.1, 1…
## $ weather <chr> "drizzle", "rain", "rain", "rain", "rain", "rain", "rain…
Chart
brush <- alt$selection(type = "interval", encodings = list("x"))
bars <-
alt$Chart()$
mark_bar()$
encode(
x = alt$X("date:O", timeUnit="month"),
y = "mean(precipitation):Q",
opacity = alt$condition(
brush,
alt$OpacityValue(1),
alt$OpacityValue(0.7)
)
)$
properties(selection = brush)
line <-
alt$Chart()$
mark_rule(color = "firebrick")$
encode(
y = "mean(precipitation):Q",
size = alt$SizeValue(3)
)$
transform_filter(brush$ref())
chart <- alt$layer(bars, line, data = weather)
chart
Interactive Chart with Cross-Highlight
DataThis example shows an interactive chart where selections in one portion of the chart affect what is shown in other panels. Click on the bar chart to see a detail of the distribution in the upper panel.
## Rows: 3,201
## Columns: 16
## $ Title <chr> "The Land Girls", "First Love, Last Rites", "I …
## $ US_Gross <int> 146083, 10876, 203134, 373615, 1009819, 24551, …
## $ Worldwide_Gross <dbl> 146083, 10876, 203134, 373615, 1087521, 2624551…
## $ US_DVD_Sales <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Production_Budget <int> 8000000, 300000, 250000, 300000, 1000000, 16000…
## $ Release_Date <chr> "Jun 12 1998", "Aug 07 1998", "Aug 28 1998", "S…
## $ MPAA_Rating <chr> "R", "R", NA, NA, "R", NA, "R", "R", "R", NA, N…
## $ Running_Time_min <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Distributor <chr> "Gramercy", "Strand", "Lionsgate", "Fine Line",…
## $ Source <chr> NA, NA, NA, NA, "Original Screenplay", NA, NA, …
## $ Major_Genre <chr> NA, "Drama", "Comedy", "Comedy", "Drama", NA, N…
## $ Creative_Type <chr> NA, NA, NA, NA, "Contemporary Fiction", NA, NA,…
## $ Director <chr> NA, NA, NA, NA, NA, NA, "Christopher Nolan", NA…
## $ Rotten_Tomatoes_Rating <int> NA, NA, NA, 13, 62, NA, NA, NA, 25, 86, 81, 84,…
## $ IMDB_Rating <dbl> 6.1, 6.9, 6.8, NA, 3.4, NA, 7.7, 3.8, 5.8, 7.0,…
## $ IMDB_Votes <int> 1071, 207, 865, NA, 165, NA, 15133, 353, 3275, …
Chart
pts <- alt$selection(type = "single", encodings = list("x"))
rect <-
alt$Chart(vega_data$movies$url)$
mark_rect()$
encode(
x = alt$X("IMDB_Rating:Q", bin = TRUE),
y = alt$Y("Rotten_Tomatoes_Rating:Q", bin=TRUE),
color = alt$Color(
"count()",
scale = alt$Scale(scheme = "greenblue"),
legend = alt$Legend(title = "Total Records")
)
)
circ <-
rect$
mark_point()$
encode(
color = alt$ColorValue("grey"),
size = alt$Size(
"count()",
legend = alt$Legend(title = "Records in Selection")
)
)$
transform_filter(pts$ref())
bar <-
alt$Chart(vega_data$movies$url)$
mark_bar()$
encode(
x = "Major_Genre:N",
y = "count()",
color = alt$condition(
pts,
alt$ColorValue("steelblue"),
alt$ColorValue("grey"))
)$
properties(
selection = pts,
width = 550,
height = 200
)
chart <-
((rect + circ) & bar)$
resolve_legend(color = "independent", size = "independent")
chart
Interactive Crossfilter
This example shows a multi-panel view of the same data, where you can interactively select a portion of the data in any of the panels to highlight that portion in any of the other panels.
Note: alt$repeat()
must be translated to alt$\x60repeat\x60()
.
## Rows: 2,000
## Columns: 5
## $ date <chr> "2001/01/14 21:55", "2001/03/26 20:15", "2001/03/05 14:55"…
## $ delay <int> 0, -11, -3, 12, 2, 47, 3, -4, 4, 0, 18, -7, -10, 23, 7, -1…
## $ distance <int> 480, 507, 714, 342, 373, 189, 872, 723, 318, 487, 239, 453…
## $ origin <chr> "SAN", "PHX", "ELP", "SJC", "SMF", "DAL", "AUS", "GEG", "F…
## $ destination <chr> "SMF", "SLC", "LAX", "SNA", "LAX", "AUS", "PHX", "OAK", "J…
Chart
brush <- alt$selection_interval(encodings = list("x"))
# Define the base chart, with the common parts of the
# background and highlights
base <-
alt$Chart(vega_data$flights_2k$url)$
mark_bar()$
encode(
x = alt$X(
alt$`repeat`("column"),
type = "quantitative",
bin = alt$Bin(maxbins=20)
),
y = "count()"
)$
properties(width = 160, height = 130)
# blue background with selection
background <- base$properties(selection = brush)
# yellow highlights on the transformed data
highlight <-
base$
encode(
color = alt$value("goldenrod")
)$
transform_filter(brush$ref())
# layer the two charts & repeat
chart <-
(background + highlight)$
transform_calculate("time", "hours(datum.date)")$
`repeat`(column = list("distance", "delay", "time"))
chart
Interactive Rectangular Brush
DataThis example shows how to add a simple rectangular brush to a scatter plot. By clicking and dragging on the plot, you can highlight points within the range.
## Rows: 406
## Columns: 9
## $ Name <chr> "chevrolet chevelle malibu", "buick skylark 320", "pl…
## $ Miles_per_Gallon <dbl> 18, 15, 18, 16, 17, 15, 14, 14, 14, 15, NaN, NaN, NaN…
## $ Cylinders <dbl> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8,…
## $ Displacement <dbl> 307, 350, 318, 304, 302, 429, 454, 440, 455, 390, 133…
## $ Horsepower <dbl> 130, 165, 150, 150, 140, 198, 220, 215, 225, 190, 115…
## $ Weight_in_lbs <dbl> 3504, 3693, 3436, 3433, 3449, 4341, 4354, 4312, 4425,…
## $ Acceleration <dbl> 12.0, 11.5, 11.0, 12.0, 10.5, 10.0, 9.0, 8.5, 10.0, 8…
## $ Year <dttm> 1970-01-01, 1970-01-01, 1970-01-01, 1970-01-01, 1970…
## $ Origin <chr> "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA…
Chart
brush <- alt$selection(type = "interval")
chart <-
alt$Chart(vega_data$cars())$
mark_point()$
encode(
x = "Horsepower:Q",
y = "Miles_per_Gallon:Q",
color = alt$condition(brush, "Cylinders:O", alt$value("grey"))
)$
properties(selection = brush)
chart
Interactive Scatter Plot and Linked Layered Histogram
Data DefinitionThis example shows how to link a scatter plot and a histogram together such that clicking on a point in the scatter plot will isolate the distribution corresponding to that point, and vice versa.
source <- tibble(
gender = c(rep("M", 1000), rep("F", 1000)),
height = c(rnorm(1000, 69, 7), rnorm(1000, 64, 6)),
weight = c(rnorm(1000, 195.8, 144), rnorm(1000, 167, 100)),
age = c(rnorm(1000, 45, 8), rnorm(1000, 51, 6))
)
## Rows: 2,000
## Columns: 4
## $ gender <chr> "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M"…
## $ height <dbl> 67.32169, 76.02880, 70.84474, 74.81332, 63.78757, 79.18516, 65.…
## $ weight <dbl> 40.73732, -117.29040, -136.48887, 75.42213, 328.06836, 248.9139…
## $ age <dbl> 50.12464, 62.52822, 37.64530, 46.06724, 63.17965, 39.90173, 46.…
Chart
selector <- alt$selection_single(empty = "all", fields = list("gender"))
color_scale <-
alt$Scale(
domain = list("M", "F"),
range = list('#1FC3AA', '#8624F5')
)
base <-
alt$Chart(source)$
properties(width = 250, height = 250)$
add_selection(selector)
points <-
base$mark_point(filled=TRUE, size=200)$
encode(
x = alt$X(
"mean(height):Q",
scale = alt$Scale(domain = list(0, 84))
),
y = alt$Y(
"mean(weight):Q",
scale = alt$Scale(domain=list(0,250))),
color = alt$condition(
selector,
"gender:N",
alt$value("lightgray"),
scale = color_scale
)
)$
interactive()
hists <-
base$
mark_bar(opacity = 0.5, thickness = 100)$
encode(
x = alt$X(
"age",
bin = alt$Bin(step = 5), # step keeps bin size the same
scale = alt$Scale(domain = list(0, 100))
),
y = alt$Y(
"count()",
stack = NULL,
scale = alt$Scale(domain = list(0, 350))
),
color = alt$Color("gender:N", scale = color_scale)
)$
transform_filter(selector)
points | hists
Multi-Line Highlight
DataThis multi-line chart uses an invisible Voronoi tessellation to handle mouseover to identify the nearest point and then highlight the line on which the point falls. It is adapted from the Vega-Lite example.
## Rows: 560
## Columns: 3
## $ symbol <chr> "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT",…
## $ date <dttm> 2000-01-01, 2000-02-01, 2000-03-01, 2000-04-01, 2000-05-01, 20…
## $ price <dbl> 39.81, 36.35, 43.22, 28.37, 25.45, 32.54, 28.40, 28.40, 24.53, …
Chart
highlight <-
alt$selection_single(
on = "mouseover",
fields = list("symbol"),
nearest = TRUE
)
base <-
alt$Chart(vega_data$stocks())$
encode(
x = "date:T",
y = "price:Q",
color = "symbol:N"
)
points <-
base$mark_circle()$
encode(
opacity = alt$value(0)
)$
properties(selection = highlight, width = 600)
lines <-
base$
mark_line()$
encode(
size = alt$condition(highlight, alt$value(3), alt$value(1))
)
chart <- (points + lines)
chart
Data DefinitionThis example shows how you can use selections and layers to create a multi-line tooltip that tracks the
x
position of the cursor.To find the x-position of the cursor, we employ a little trick: we add some transparent points with only an
x
encoding (noy
encoding) and tie a nearest selection to these, tied to thex
field.
## Rows: 300
## Columns: 3
## $ category <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "…
## $ x <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18…
## $ y <dbl> 1.37, 0.81, 1.17, 1.80, 2.20, 2.09, 3.60, 3.51, 5.53, 5.47, 6…
Chart
# Create a selection that chooses the nearest point & selects based on x-value
nearest <- alt$selection(
type = "single",
nearest = TRUE,
on = "mouseover",
fields = list("x"),
empty = "none"
)
# The basic line
line <-
alt$Chart(data = data)$
mark_line(interpolate = "basis")$
encode(
x = "x:Q",
y = "y:Q",
color = "category:N"
)
# Transparent selectors across the chart. This is what tells us
# the x-value of the cursor
selectors <-
alt$Chart(data = data)$
mark_point()$
encode(
x = "x:Q",
opacity = alt$value(0)
)$
properties(selection = nearest)$
copy()
# Draw points on the line, and highlight based on selection
points <-
line$
mark_point()$
encode(
opacity = alt$condition(nearest, alt$value(1), alt$value(0))
)
# Draw text labels near the points, and highlight based on selection
text <-
line$
mark_text(align = "left", dx = 5, dy = -5)$
encode(
text = alt$condition(nearest, "y:Q", alt$value(" "))
)
# Draw a rule at the location of the selection
rules <-
alt$Chart(data = data)$
mark_rule(color = "gray")$
encode(
x = "x:Q"
)$
transform_filter(nearest$ref())
# Put the five layers into a chart and bind the data
chart <-
(line + selectors + points + rules + text)$
properties( width = 600, height = 300)
chart
Multi-panel Scatter Plot with Linked Brushing
Data
## Rows: 406
## Columns: 9
## $ Name <chr> "chevrolet chevelle malibu", "buick skylark 320", "pl…
## $ Miles_per_Gallon <dbl> 18, 15, 18, 16, 17, 15, 14, 14, 14, 15, NaN, NaN, NaN…
## $ Cylinders <dbl> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8,…
## $ Displacement <dbl> 307, 350, 318, 304, 302, 429, 454, 440, 455, 390, 133…
## $ Horsepower <dbl> 130, 165, 150, 150, 140, 198, 220, 215, 225, 190, 115…
## $ Weight_in_lbs <dbl> 3504, 3693, 3436, 3433, 3449, 4341, 4354, 4312, 4425,…
## $ Acceleration <dbl> 12.0, 11.5, 11.0, 12.0, 10.5, 10.0, 9.0, 8.5, 10.0, 8…
## $ Year <dttm> 1970-01-01, 1970-01-01, 1970-01-01, 1970-01-01, 1970…
## $ Origin <chr> "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA…
Chart
source <- vega_data$cars()
brush = alt$selection(type = "interval", resolve = "global")
base = alt$Chart(source)$
mark_point()$
encode(
y = "Miles_per_Gallon",
color=alt$condition(brush, "Origin", alt$ColorValue("gray"))
)$
add_selection(brush)$
properties(width = 250, height = 250)
base$encode(x = "Horsepower") | base$encode(x = "Acceleration")
Multiple Interactions
DataThis example shows how multiple user inputs can be layered onto a chart. The four inputs have functionality as follows:
- Dropdown: Filters the movies by genre
- Radio Buttons: Highlights certain films by Worldwide Gross
- Mouse Drag and Scroll: Zooms the x and y scales to allow for panning.
## Rows: 3,201
## Columns: 16
## $ Title <chr> "The Land Girls", "First Love, Last Rites", "I …
## $ US_Gross <int> 146083, 10876, 203134, 373615, 1009819, 24551, …
## $ Worldwide_Gross <dbl> 146083, 10876, 203134, 373615, 1087521, 2624551…
## $ US_DVD_Sales <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Production_Budget <int> 8000000, 300000, 250000, 300000, 1000000, 16000…
## $ Release_Date <chr> "Jun 12 1998", "Aug 07 1998", "Aug 28 1998", "S…
## $ MPAA_Rating <chr> "R", "R", NA, NA, "R", NA, "R", "R", "R", NA, N…
## $ Running_Time_min <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ Distributor <chr> "Gramercy", "Strand", "Lionsgate", "Fine Line",…
## $ Source <chr> NA, NA, NA, NA, "Original Screenplay", NA, NA, …
## $ Major_Genre <chr> NA, "Drama", "Comedy", "Comedy", "Drama", NA, N…
## $ Creative_Type <chr> NA, NA, NA, NA, "Contemporary Fiction", NA, NA,…
## $ Director <chr> NA, NA, NA, NA, NA, NA, "Christopher Nolan", NA…
## $ Rotten_Tomatoes_Rating <int> NA, NA, NA, 13, 62, NA, NA, NA, 25, 86, 81, 84,…
## $ IMDB_Rating <dbl> 6.1, 6.9, 6.8, NA, 3.4, NA, 7.7, 3.8, 5.8, 7.0,…
## $ IMDB_Votes <int> 1071, 207, 865, NA, 165, NA, 15133, 353, 3275, …
Chart
movies <-
alt$UrlData(
vega_data$movies$url,
format = alt$DataFormat(parse = list(`Release Date` = "date"))
)
ratings <- list("G", "NC-17", "PG", "PG-13", "R")
genres <-
list("Action", "Adventure", "Black Comedy", "Comedy", "Concert/Performance",
"Documentary", "Drama", "Horror", "Musical", "Romantic Comedy",
"Thriller/Suspense", "Western")
base <-
alt$Chart(movies, width = 200, height = 200)$
mark_point(filled = TRUE)$
transform_calculate(
Rounded_IMDB_Rating = "floor(datum.IMDB_Rating)",
Hundred_Million_Production = "datum.Production_Budget > 100000000.0 ? 100 : 10",
Release_Year = "year(datum.Release_Date)"
)$
transform_filter(
"datum.IMDB_Rating > 0"
)$
transform_filter(
alt$FieldOneOfPredicate(field = "MPAA_Rating", oneOf = ratings)
)$encode(
x = alt$X(
field = "Worldwide_Gross",
type = "quantitative",
scale = alt$Scale(domain = c(100000, 10**9), clamp = TRUE)
),
y = alt$Y(field = "IMDB_Rating", type = "quantitative"),
tooltip = "Title:N"
)
# A slider filter
year_slider <- alt$binding_range(min = 1969, max = 2018, step = 1)
slider_selection <-
alt$selection_single(
bind = year_slider,
fields = list("Release_Year"),
name = "Release Year_"
)
filter_year <- base$
add_selection(slider_selection)$
transform_filter(slider_selection)$
properties(title = "Slider Filtering")
# A dropdown filter
genre_dropdown <- alt$binding_select(options = genres)
genre_select <-
alt$selection_single(
fields = list("Major_Genre"),
bind = genre_dropdown,
name = "Genre"
)
filter_genres <-
base$
add_selection(genre_select)$
transform_filter(genre_select)$
properties(title = "Dropdown Filtering")
#color changing marks
rating_radio <- alt$binding_radio(options = ratings)
rating_select <-
alt$selection_single(
fields = list("MPAA_Rating"),
bind = rating_radio,
name = "Rating"
)
rating_color_condition <-
alt$condition(
rating_select,
alt$Color("MPAA_Rating:N", legend = NULL),
alt$value("lightgray")
)
highlight_ratings <-
base$
add_selection(rating_select)$
encode(
color = rating_color_condition
)$
properties(title = "Radio Button Highlighting")
# Boolean selection for format changes
input_checkbox <- alt$binding_checkbox()
checkbox_selection <-
alt$selection_single(bind = input_checkbox, name = "Big Budget Films")
size_checkbox_condition <-
alt$condition(
checkbox_selection,
alt$SizeValue(25),
alt$Size("Hundred_Million_Production:Q")
)
budget_sizing <-
base$
add_selection(checkbox_selection)$
encode(
size = size_checkbox_condition)$
properties(title = "Checkbox Formatting")
(filter_year | filter_genres) & (highlight_ratings | budget_sizing)
Scatter Plot and Histogram with Interval Selection
Data DefinitionThis example shows how to link a scatter plot and a histogram together such that an interval selection in the histogram will plot the selected values in the scatter plot.
Note that both subplots need to know about the mbin field created by the transform_bin method. In order to achieve this, the data is not passed to the
Chart()
instances creating the subplots, but directly in thehconcat()
function, which joins the two plots together.
## Rows: 100
## Columns: 3
## $ x <dbl> -0.0046207678, 0.7602421677, 0.0389909129, 0.7350721416, -0.14647262…
## $ y <dbl> 1.33491259, -0.86927176, 0.05548695, 0.04906691, -0.57835573, -0.998…
## $ m <dbl> 16.02914, 15.91477, 14.99754, 15.13601, 14.27985, 14.80188, 13.97079…
Chart
# interval selection in the scatter plot
pts <- alt$selection(type = "interval", encodings = list("x"))
# left panel: scatter plot
points <- alt$Chart()$
mark_point(filled = TRUE, color = "black")$
encode(
x = "x",
y = "y"
)$
transform_filter(pts)$
properties(width = 300, height = 300)
# right panel: histogram
mag <- alt$Chart()$
mark_bar()$
encode(
x = "mbin:N",
y = "count()",
color = alt$condition(pts, alt$value("black"), alt$value("lightgray"))
)$
properties(width = 300, height = 300)$
add_selection(pts)
# build the chart:
alt$hconcat(points, mag, data = source)$
transform_bin("mbin", field = "m", bin = alt$Bin(maxbins = 20))
Selection Detail Example
Data DefinitionThis example shows a selection that links two views of data: the left panel contains one point per object, and the right panel contains one line per object. Clicking on either the points or lines will select the corresponding objects in both views of the data.
The challenge lies in expressing such hierarchical data in a way that Altair can handle. We do this by merging the data into a “long form” dataframe, and aggregating identical metadata for the final plot.
n_objects <- 20
n_times <- 50
# Create one (x, y) pair of metadata per object
locations <-
tibble(
id = seq(1, n_objects),
x = rnorm(n_objects),
y = rnorm(n_objects)
)
# Create a 50-element time-series for each object
timeseries <-
crossing(
id = seq(1, n_objects),
time = seq(1, n_times)
) %>%
mutate(value = rnorm(n())) %>%
group_by(id) %>%
mutate(value = cumsum(value)) %>%
ungroup()
# Merge the (x, y) metadata into the long-form view
data <- left_join(timeseries, locations, by = "id")
## Rows: 1,000
## Columns: 5
## $ id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ time <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1…
## $ value <dbl> 0.8029327, 0.2294558, -1.6986693, -1.0342785, -2.6368187, -3.991…
## $ x <dbl> -0.2484829, -0.2484829, -0.2484829, -0.2484829, -0.2484829, -0.2…
## $ y <dbl> 1.001113, 1.001113, 1.001113, 1.001113, 1.001113, 1.001113, 1.00…
Chart
selector <- alt$selection_single(empty = "all", fields = list("id"))
points <-
alt$Chart(data)$
mark_point(filled = TRUE, size = 200)$
encode(
x = "mean(x)",
y = "mean(y)",
color = alt$condition(
selector,
"id:O",
alt$value("lightgray"),
legend = NULL
)
)$
properties(selection = selector, width = 250, height = 250)
timeseries <-
alt$Chart(data)$
mark_line()$
encode(
x = "time",
y = alt$Y("value", scale = alt$Scale(domain = c(-15, 15))),
color = alt$Color("id:O", legend = NULL)
)$
transform_filter(selector)$
properties(selection = selector, width = 250, height = 250)
points | timeseries
Selection Histogram
DataThis chart shows an example of using an interval selection to filter the contents of an attached histogram, allowing the user to see the proportion of items in each category within the selection.
## Rows: 406
## Columns: 9
## $ Name <chr> "chevrolet chevelle malibu", "buick skylark 320", "pl…
## $ Miles_per_Gallon <dbl> 18, 15, 18, 16, 17, 15, 14, 14, 14, 15, NaN, NaN, NaN…
## $ Cylinders <dbl> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8,…
## $ Displacement <dbl> 307, 350, 318, 304, 302, 429, 454, 440, 455, 390, 133…
## $ Horsepower <dbl> 130, 165, 150, 150, 140, 198, 220, 215, 225, 190, 115…
## $ Weight_in_lbs <dbl> 3504, 3693, 3436, 3433, 3449, 4341, 4354, 4312, 4425,…
## $ Acceleration <dbl> 12.0, 11.5, 11.0, 12.0, 10.5, 10.0, 9.0, 8.5, 10.0, 8…
## $ Year <dttm> 1970-01-01, 1970-01-01, 1970-01-01, 1970-01-01, 1970…
## $ Origin <chr> "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA…
Chart
cars <- vega_data$cars()
brush <- alt$selection(type="interval")
points <-
alt$Chart()$
mark_point()$
encode(
x = "Horsepower:Q",
y = "Miles_per_Gallon:Q",
color = alt$condition(brush, "Origin:N", alt$value("lightgray"))
)$
properties(selection = brush)
bars <-
alt$Chart()$
mark_bar()$
encode(
x = "count(Origin):Q",
y = "Origin:N",
color = "Origin:N"
)$
transform_filter(brush$ref())
chart <- alt$vconcat(points, bars, data = cars)
chart
Simple Interactive Colored Scatterplot
Data
## Rows: 406
## Columns: 9
## $ Name <chr> "chevrolet chevelle malibu", "buick skylark 320", "pl…
## $ Miles_per_Gallon <dbl> 18, 15, 18, 16, 17, 15, 14, 14, 14, 15, NaN, NaN, NaN…
## $ Cylinders <dbl> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8,…
## $ Displacement <dbl> 307, 350, 318, 304, 302, 429, 454, 440, 455, 390, 133…
## $ Horsepower <dbl> 130, 165, 150, 150, 140, 198, 220, 215, 225, 190, 115…
## $ Weight_in_lbs <dbl> 3504, 3693, 3436, 3433, 3449, 4341, 4354, 4312, 4425,…
## $ Acceleration <dbl> 12.0, 11.5, 11.0, 12.0, 10.5, 10.0, 9.0, 8.5, 10.0, 8…
## $ Year <dttm> 1970-01-01, 1970-01-01, 1970-01-01, 1970-01-01, 1970…
## $ Origin <chr> "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA…
Chart
chart <-
alt$Chart(vega_data$cars())$
mark_circle()$
encode(
x = "Horsepower",
y = "Miles_per_Gallon",
color = "Origin"
)$
interactive()
chart
Using Selection Interval with mark_area
Data
#glimpse(vega_data$unemployment_across_industries())
Chart
source <- vega_data$unemployment_across_industries$url
base <-
alt$Chart(source)$
mark_area(color = "goldenrod", opacity = 0.3)$
encode(
x = "yearmonth(date):T",
y = "sum(count):Q"
)
brush <- alt$selection_interval(encodings = list("x"), empty = "all")
background <- base$add_selection(brush)
selected <-
base$
transform_filter(brush)$
mark_area(color = "goldenrod")
background + selected
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4