Note
To verify that oneDAL is being used for these algorithms, you can enable verbose mode. See verbose mode documentation for details.
Applying Extension for Scikit-learn* impacts the following scikit-learn estimators:
on CPU Classification RegressionAlgorithm
Parameters
Data formats
All parameters are supported
No limitations
All parameters are supported
No limitations
sklearn.ensemble.RandomForestRegressor
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'mse'
Multi-output and sparse data are not supported
sklearn.ensemble.ExtraTreesRegressor
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'mse'
Multi-output and sparse data are not supported
sklearn.neighbors.KNeighborsRegressor
All parameters are supported except:
metric
!= 'euclidean'
or 'minkowski'
with p
!= 2
Multi-output and sparse data are not supported
sklearn.linear_model.LinearRegression
All parameters are supported except:
sample_weight
!= None
positive
= True
Only dense data is supported.
All parameters are supported except:
solver
!= 'auto'
sample_weight
!= None
positive
= True
alpha
must be scalar
Only dense data is supported.
sklearn.linear_model.ElasticNet
All parameters are supported except:
sample_weight
!= None
Multi-output and sparse data are not supported, #observations
should be >= #features
.
All parameters are supported except:
sample_weight
!= None
Multi-output and sparse data are not supported, #observations
should be >= #features
.
Algorithm
Parameters
Data formats
All parameters are supported except:
algorithm
!= 'lloyd'
(‘elkan’ falls back to ‘lloyd’)
n_clusters
= 1
sample_weight
must be None, constant, or equal weights
init
= 'k-means++'
falls back to CPU
No limitations
All parameters are supported except:
metric
!= 'euclidean'
or 'minkowski'
with p
!= 2
algorithm
not in ['brute'
, 'auto'
]
Only dense data is supported
Dimensionality ReductionAlgorithm
Parameters
Data formats
All parameters are supported except:
svd_solver
not in ['full'
, 'covariance_eigh'
, 'onedal_svd'
]
For scikit-learn < 1.5: 'full'
solver is automatically mapped to 'covariance_eigh'
Sparse data is not supported
All parameters are supported except:
metric
!= ‘euclidean’ or 'minkowski'
with p
!= 2
n_components
can only be 2
Refer to TSNE acceleration details to learn more.
Sparse data is not supported
Nearest NeighborsAlgorithm
Parameters
Data formats
sklearn.neighbors.NearestNeighbors
For algorithm
== ‘kd_tree’:
all parameters except metric
!= 'euclidean'
or 'minkowski'
with p
!= 2
For algorithm
== ‘brute’:
all parameters except metric
not in ['euclidean'
, 'manhattan'
, 'minkowski'
, 'chebyshev'
, 'cosine'
]
Sparse data is not supported
Other TasksAlgorithm
Parameters
Data formats
sklearn.covariance.EmpiricalCovariance
All parameters are supported
Only dense data is supported
sklearnex.basic_statistics.BasicStatistics
All parameters are supported
Supported data formats:
Dense data
CSR sparse matrices
Sample weights not supported for CSR data format
sklearn.model_selection.train_test_split
All parameters are supported
Supported data formats:
Only dense data is supported
Only integer and 32/64-bits floating point types are supported
Data with more than 3 dimensions is not supported
Only np.ndarray
inputs are supported.
sklearn.utils.assert_all_finite
All parameters are supported
Only dense data is supported
sklearn.metrics.pairwise_distance
All parameters are supported except:
metric
not in ['cosine'
, 'correlation'
]
Supported data formats:
Only dense data is supported
Y
must be None
Input dtype must be np.float64
All parameters are supported except:
average
!= None
sample_weight
!= None
max_fpr
!= None
multi_class
!= None
No limitations
on GPU ClassificationAlgorithm
Parameters
Data formats
All parameters are supported except:
kernel
= 'sigmoid_poly'
class_weight
!= None
Only binary dense data is supported
sklearn.ensemble.RandomForestClassifier
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'gini'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.ensemble.ExtraTreesClassifier
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'gini'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.neighbors.KNeighborsClassifier
All parameters are supported except:
algorithm
!= 'brute'
weights
= 'callable'
metric
not in ['euclidean'
, 'manhattan'
, 'minkowski'
, 'chebyshev'
, 'cosine'
]
Only dense data is supported
sklearn.linear_model.LogisticRegression
All parameters are supported except:
solver
!= 'newton-cg'
class_weight
!= None
sample_weight
!= None
penalty
!= 'l2'
dual
= True
intercept_scaling
!= 1
warm_start
= True
l1_ratio
!= 0 and l1_ratio
!= None
Only binary classification is supported
No limitations
RegressionAlgorithm
Parameters
Data formats
sklearn.ensemble.RandomForestRegressor
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'mse'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.ensemble.ExtraTreesRegressor
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'mse'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.neighbors.KNeighborsRegressor
All parameters are supported except:
algorithm
!= 'brute'
weights
= 'callable'
metric
!= 'euclidean'
or 'minkowski'
with p
!= 2
Only dense data is supported
sklearn.linear_model.LinearRegression
All parameters are supported except:
sample_weight
!= None
positive
= True
Only dense data is supported.
ClusteringAlgorithm
Parameters
Data formats
All parameters are supported except:
algorithm
!= 'lloyd'
(‘elkan’ falls back to ‘lloyd’)
n_clusters
= 1
sample_weight
must be None, constant, or equal weights
init
= 'k-means++'
falls back to CPU
No limitations
All parameters are supported except:
metric
!= 'euclidean'
algorithm
not in ['brute'
, 'auto'
]
Only dense data is supported
Dimensionality ReductionAlgorithm
Parameters
Data formats
All parameters are supported except:
svd_solver
not in ['full'
, 'covariance_eigh'
, 'onedal_svd'
]
For scikit-learn < 1.5: 'full'
solver is automatically mapped to 'covariance_eigh'
Sparse data is not supported
Nearest NeighborsAlgorithm
Parameters
Data formats
sklearn.neighbors.NearestNeighbors
All parameters are supported except:
algorithm
!= 'brute'
weights
= 'callable'
metric
not in ['euclidean'
, 'manhattan'
, 'minkowski'
, 'chebyshev'
, 'cosine'
]
Only dense data is supported
Other Tasks SPMD Support ClassificationAlgorithm
Parameters & Methods
Data formats
sklearn.ensemble.RandomForestClassifier
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'gini'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.ensemble.ExtraTreesClassifier
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'gini'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.neighbors.KNeighborsClassifier
All parameters are supported except:
algorithm
!= 'brute'
weights
= 'callable'
metric
not in ['euclidean'
, 'manhattan'
, 'minkowski'
, 'chebyshev'
, 'cosine'
]
predict_proba
method not supported
Only dense data is supported
sklearn.linear_model.LogisticRegression
All parameters are supported except:
solver
!= 'newton-cg'
class_weight
!= None
sample_weight
!= None
penalty
!= 'l2'
dual
= True
intercept_scaling
!= 1
multi_class
!= 'multinomial'
warm_start
= True
l1_ratio
!= None
Only binary classification is supported
No limitations
RegressionAlgorithm
Parameters & Methods
Data formats
sklearn.ensemble.RandomForestRegressor
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'mse'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.ensemble.ExtraTreesRegressor
All parameters are supported except:
warm_start
= True
ccp_alpha
!= 0
criterion
!= 'mse'
oob_score
= True
sample_weight
!= None
Multi-output and sparse data are not supported
sklearn.neighbors.KNeighborsRegressor
All parameters are supported except:
algorithm
!= 'brute'
weights
= 'callable'
metric
!= 'euclidean'
or 'minkowski'
with p
!= 2
Only dense data is supported
sklearn.linear_model.LinearRegression
All parameters are supported except:
sample_weight
!= None
positive
= True
Only dense data is supported.
ClusteringAlgorithm
Parameters & Methods
Data formats
All parameters are supported except:
algorithm
!= 'lloyd'
(‘elkan’ falls back to ‘lloyd’)
n_clusters
= 1
sample_weight
must be None, constant, or equal weights
init
= 'k-means++'
falls back to CPU
No limitations
All parameters are supported except:
metric
!= 'euclidean'
algorithm
not in ['brute'
, 'auto'
]
Only dense data is supported
Dimensionality ReductionAlgorithm
Parameters & Methods
Data formats
All parameters are supported except:
svd_solver
not in ['full'
, 'covariance_eigh'
, 'onedal_svd'
]
For scikit-learn < 1.5: 'full'
solver is automatically mapped to 'covariance_eigh'
Sparse data is not supported
Nearest NeighborsAlgorithm
Parameters
Data formats
sklearn.neighbors.NearestNeighbors
All parameters are supported except:
algorithm
!= 'brute'
weights
= 'callable'
metric
not in ['euclidean'
, 'manhattan'
, 'minkowski'
, 'chebyshev'
, 'cosine'
]
Only dense data is supported
Other Tasks Scikit-learn TestsMonkey-patched scikit-learn classes and functions passes scikit-learn’s own test suite, with few exceptions, specified in deselected_tests.yaml.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4