The DBgetPlots
function extracts plot-level data from FIA’s online DataMart or SQLite database.
dat1 <- DBgetPlots(states = "Rhode Island",
datsource = "datamart",
eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
Type = "ALL"),
issp = TRUE)
#> downloading and extracting SURVEY for RI ...
#> downloading and extracting POP_EVAL for RI ...
#> downloading and extracting POP_EVAL_GRP for RI ...
#> downloading and extracting POP_EVAL_TYP for RI ...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> getting FIA Evaluation info for: Rhode Island(44)...
#> issp=TRUE, but getxy = FALSE... changing getxy = TRUE
#> getting most current data for XY
#> ================================================================================
#>
#> getting data for Rhode Island...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting COND for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> 44 - ppsa.EVALID IN(442200)
#> downloading and extracting POP_EVAL for RI ...
#> downloading and extracting POP_EVAL_GRP for RI ...
#> downloading and extracting POP_EVAL_TYP for RI ...
#> WITH
#> maxyear AS
#> (SELECT distinct p.STATECD, p.UNITCD, p.COUNTYCD, p.PLOT, MAX(p.INVYR) maxyr
#> FROM XYdf p
#> INNER JOIN SURVEY survey
#> ON (survey.CN = p.SRV_CN AND survey.ANN_INVENTORY = 'Y')
#> WHERE p.STATECD in(44) and p.PLOT_STATUS_CD <> 3 and p.SUBCYCLE <> 99
#> GROUP BY p.STATECD, p.UNITCD, p.COUNTYCD, p.PLOT)
#> SELECT xy.CN, xy.LON, xy.LAT, xy.MEASYEAR, xy.PLOT_STATUS_CD, xy.INVYR, xy.STATECD, xy.UNITCD, xy.COUNTYCD, xy.PLOT, xy.INTENSITY
#> FROM XYdf xy
#> INNER JOIN maxyear ON (xy.STATECD = maxyear.STATECD and xy.UNITCD = maxyear.UNITCD and xy.COUNTYCD = maxyear.COUNTYCD and xy.PLOT = maxyear.PLOT and xy.INVYR = maxyear.maxyr)
#> downloading and extracting TREE for RI ...
#>
#> ## STATUS: Getting tree data from TREE (RI) ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( RI )...
names(dat1)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "xyCur_PUBLIC"
#> [7] "pop_plot_stratum_assgn" "evalid" "pltcnt"
#> [10] "invyrs" "evalInfo" "ref_species"
#> [13] "args"
plt1 <- dat1$tabs$plt
spxy1 <- dat1$xyCur_PUBLIC
table(plt1$INVYR)
#>
#> 2016 2017 2018 2019 2020 2021 2022
#> 38 40 38 36 37 41 38
# Add a filter to include only plots with Northern red oak forest type (FORTYPCD == 505)
# Note: *allFilter* filters for plots and/or conditions for all states specified.
dat1b <- DBgetPlots(states = "Rhode Island",
datsource = "datamart",
eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
Type = "ALL"),
issp = TRUE,
allFilter = "FORTYPCD == 505")
#> downloading and extracting SURVEY for RI ...
#> downloading and extracting POP_EVAL for RI ...
#> downloading and extracting POP_EVAL_GRP for RI ...
#> downloading and extracting POP_EVAL_TYP for RI ...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> getting FIA Evaluation info for: Rhode Island(44)...
#> issp=TRUE, but getxy = FALSE... changing getxy = TRUE
#> getting most current data for XY
#> ================================================================================
#>
#> getting data for Rhode Island...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting COND for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> 44 - ppsa.EVALID IN(442200)
#> filter removed 346 records: FORTYPCD == 505
#> downloading and extracting POP_EVAL for RI ...
#> downloading and extracting POP_EVAL_GRP for RI ...
#> downloading and extracting POP_EVAL_TYP for RI ...
#> WITH
#> maxyear AS
#> (SELECT distinct p.STATECD, p.UNITCD, p.COUNTYCD, p.PLOT, MAX(p.INVYR) maxyr
#> FROM XYdf p
#> INNER JOIN SURVEY survey
#> ON (survey.CN = p.SRV_CN AND survey.ANN_INVENTORY = 'Y')
#> WHERE p.STATECD in(44) and p.PLOT_STATUS_CD <> 3 and p.SUBCYCLE <> 99
#> GROUP BY p.STATECD, p.UNITCD, p.COUNTYCD, p.PLOT)
#> SELECT xy.CN, xy.LON, xy.LAT, xy.MEASYEAR, xy.PLOT_STATUS_CD, xy.INVYR, xy.STATECD, xy.UNITCD, xy.COUNTYCD, xy.PLOT, xy.INTENSITY
#> FROM XYdf xy
#> INNER JOIN maxyear ON (xy.STATECD = maxyear.STATECD and xy.UNITCD = maxyear.UNITCD and xy.COUNTYCD = maxyear.COUNTYCD and xy.PLOT = maxyear.PLOT and xy.INVYR = maxyear.maxyr)
#> downloading and extracting TREE for RI ...
#>
#> ## STATUS: Getting tree data from TREE (RI) ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( RI )...
names(dat1b)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "xyCur_PUBLIC"
#> [7] "pop_plot_stratum_assgn" "evalid" "pltcnt"
#> [10] "invyrs" "evalInfo" "ref_species"
#> [13] "args"
spxy1b <- dat1b$xyCur_PUBLIC
dim(spxy1b)
#> [1] 15 14
Example 3: Get data for Delaware, most current FIA Evaluation, include plotgeom data and subplot tables
dat2 <- DBgetPlots(states = "Delaware",
datsource = "datamart",
eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
Type = "ALL"),
issubp = TRUE,
addplotgeom = TRUE)
#> downloading and extracting SURVEY for DE ...
#> downloading and extracting POP_EVAL for DE ...
#> downloading and extracting POP_EVAL_GRP for DE ...
#> downloading and extracting POP_EVAL_TYP for DE ...
#> downloading and extracting PLOT for DE ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for DE ...
#> getting FIA Evaluation info for: Delaware(10)...
#> ================================================================================
#>
#> getting data for Delaware...
#> downloading and extracting PLOT for DE ...
#> downloading and extracting PLOTGEOM for DE ...
#> downloading and extracting COND for DE ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for DE ...
#> 10 - ppsa.EVALID IN(102300)
#> downloading and extracting TREE for DE ...
#>
#> ## STATUS: Getting tree data from TREE (DE) ...
#>
#> ## STATUS: Getting subplot data from SUBPLOT/SUBP_COND (DE) ...
#> downloading and extracting SUBPLOT for DE ...
#> downloading and extracting SUBP_COND for DE ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( DE )...
names(dat2)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "pop_plot_stratum_assgn"
#> [7] "evalid" "pltcnt" "invyrs"
#> [10] "evalInfo" "ref_species" "args"
tabs2 <- dat2$tabs
plt2 <- tabs2$plt
## subplot and subp_cond tables are added to tabs list
names(tabs2)
#> [1] "tree" "subplot" "subp_cond" "plt" "cond"
## PLOTGEOM data are appended to plt table (e.g., ALP_ADFORCD, FVS_VARIANT)
head(plt2)
#> CN PREV_PLT_CN INVYR STATECD CYCLE SUBCYCLE UNITCD COUNTYCD
#> 1 1093478670290487 304032774489998 2023 10 8 3 1 5
#> 2 1093478671290487 304032775489998 2023 10 8 3 1 5
#> 3 1093478672290487 304032776489998 2023 10 8 3 1 5
#> 4 1093478673290487 304032777489998 2023 10 8 3 1 5
#> 5 1093478674290487 304032778489998 2023 10 8 3 1 3
#> 6 1093478675290487 304032779489998 2023 10 8 3 1 3
#> PLOT PLOT_STATUS_CD PLOT_NONSAMPLE_REASN_CD SAMP_METHOD_CD SUBP_EXAMINE_CD
#> 1 595 1 NA 1 4
#> 2 334 3 2 1 4
#> 3 617 2 NA 2 1
#> 4 410 3 2 1 4
#> 5 598 2 NA 2 1
#> 6 19 2 NA 2 1
#> MANUAL MACRO_BREAKPOINT_DIA INTENSITY MEASYEAR MEASMON MEASDAY REMPER KINDCD
#> 1 9.0 NA 1 2023 10 16 NA 1
#> 2 9.0 NA 1 2024 3 22 NA 2
#> 3 9.2 NA 1 2023 6 1 NA 2
#> 4 9.0 NA 1 2023 8 3 NA 1
#> 5 9.2 NA 1 2023 6 1 NA 2
#> 6 9.2 NA 1 2023 6 1 NA 2
#> DESIGNCD RDDISTCD WATERCD LON_PUBLIC LAT_PUBLIC ELEV_PUBLIC GROW_TYP_CD
#> 1 1 3 0 -75.42634 38.76185 40 NA
#> 2 1 NA NA -75.66730 38.60185 20 2
#> 3 1 NA NA -75.19065 38.59463 10 2
#> 4 1 NA NA -75.30461 38.63188 20 NA
#> 5 1 NA NA -75.76654 39.62781 90 2
#> 6 1 NA NA -75.52052 39.75933 50 2
#> MORT_TYP_CD P2PANEL P3PANEL SUBPANEL DECLINATION NF_PLOT_STATUS_CD
#> 1 NA 2 NA 0 NA NA
#> 2 2 2 NA 0 NA NA
#> 3 2 2 NA 0 NA NA
#> 4 NA 2 NA 0 NA NA
#> 5 2 2 NA 0 NA NA
#> 6 2 2 NA 0 NA NA
#> NF_PLOT_NONSAMPLE_REASN_CD NF_SAMPLING_STATUS_CD P2VEG_SAMPLING_STATUS_CD
#> 1 NA 0 0
#> 2 NA 0 0
#> 3 NA NA 0
#> 4 NA 0 0
#> 5 NA NA 0
#> 6 NA NA 0
#> P2VEG_SAMPLING_LEVEL_DETAIL_CD INVASIVE_SAMPLING_STATUS_CD
#> 1 NA 0
#> 2 NA 0
#> 3 NA 0
#> 4 NA 0
#> 5 NA 0
#> 6 NA 0
#> INVASIVE_SPECIMEN_RULE_CD DESIGNCD_P2A QA_STATUS MODIFIED_DATE CONGCD
#> 1 NA NA 1 2025-02-03 13:34:42 1000
#> 2 NA NA 1 2025-02-03 08:29:48 1000
#> 3 NA NA 1 2025-02-03 13:34:42 1000
#> 4 NA NA 1 2025-02-03 13:34:42 1000
#> 5 NA NA 1 2025-02-03 13:34:42 1000
#> 6 NA NA 1 2025-02-03 13:34:42 1000
#> ECOSUBCD HUC EMAP_HEX ALP_ADFORCD FVS_VARIANT FVS_LOC_CD FVS_REGION
#> 1 232Hd 2080109 1720 NA NE 921 9
#> 2 232Hd 2080109 1721 NA NE 921 9
#> 3 232Hc 2040303 1608 NA NE 921 9
#> 4 232Hc 2040303 1608 NA NE 921 9
#> 5 232Hd 2040205 2061 NA NE 921 9
#> 6 232Ad 2040205 1945 NA NE 921 9
#> FVS_FOREST FVS_DISTRICT ROADLESSCD NBRCND NBRCNDSAMP NBRCNDFOR NBRCNDFTYP
#> 1 21 NA NA 1 1 1 1
#> 2 21 NA NA 1 0 0 0
#> 3 21 NA NA 1 1 0 0
#> 4 21 NA NA 1 0 0 0
#> 5 21 NA NA 1 1 0 0
#> 6 21 NA NA 1 1 0 0
#> CCLIVEPLT FORNONSAMP PLOT_ID
#> 1 85 Sampled-Forest PID100100500595
#> 2 95 Nonsampled-Denied access PID100100500334
#> 3 3 Sampled-Nonforest PID100100500617
#> 4 90 Nonsampled-Denied access PID100100500410
#> 5 9 Sampled-Nonforest PID100100300598
#> 6 15 Sampled-Nonforest PID100100300019
Example 3: Get data for Delaware, most current FIA Evaluation, include pop tables
dat3 <- DBgetPlots(states = "Delaware",
datsource = "datamart",
eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
Type = "ALL"),
savePOP = TRUE,
othertables = c("POP_STRATUM", "POP_ESTN_UNIT"))
#> downloading and extracting SURVEY for DE ...
#> downloading and extracting POP_EVAL for DE ...
#> downloading and extracting POP_EVAL_GRP for DE ...
#> downloading and extracting POP_EVAL_TYP for DE ...
#> downloading and extracting PLOT for DE ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for DE ...
#> getting FIA Evaluation info for: Delaware(10)...
#> ================================================================================
#>
#> getting data for Delaware...
#> downloading and extracting PLOT for DE ...
#> downloading and extracting COND for DE ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for DE ...
#> downloading and extracting POP_STRATUM for DE ...
#> downloading and extracting POP_ESTN_UNIT for DE ...
#> downloading and extracting POP_STRATUM for DE ...
#> downloading and extracting POP_ESTN_UNIT for DE ...
#> 10 - ppsa.EVALID IN(102300)
#> downloading and extracting TREE for DE ...
#>
#> ## STATUS: Getting tree data from TREE (DE) ...
#> downloading and extracting POP_STRATUM for DE ...
#> downloading and extracting POP_ESTN_UNIT for DE ...
#>
#> ## STATUS: GETTING POP_STRATUM (DE)...
#>
#> ## STATUS: GETTING POP_ESTN_UNIT (DE)...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( DE )...
#>
#> ## STATUS: GETTING POP_STRATUM DATA ( DE )...
#>
#> ## STATUS: GETTING POP_ESTN_UNIT DATA ( DE )...
## savePOP = TRUE, saves the POP_PLOT_STRATUM_ASSGN table used to select plots
names(dat3)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "pop_plot_stratum_assgn"
#> [7] "pop_stratum" "pop_estn_unit" "evalid"
#> [10] "pltcnt" "invyrs" "evalInfo"
#> [13] "ref_species" "args"
## pop_stratum and pop_estn_unit tables are added to tabs list
tabs3 <- dat3$tabs
names(tabs3)
#> [1] "tree" "pop_stratum" "pop_estn_unit" "plt"
#> [5] "cond"
Example 4: Export plot-level data to a CSV file
DBgetPlots(states = "Rhode Island",
datsource = "datamart",
eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
Type = "ALL"),
returndata = FALSE,
savedata = TRUE,
savedata_opts = savedata_options(outfolder = outfolder,
out_fmt = "csv",
overwrite_layer = TRUE))
#> downloading and extracting SURVEY for RI ...
#> downloading and extracting POP_EVAL for RI ...
#> downloading and extracting POP_EVAL_GRP for RI ...
#> downloading and extracting POP_EVAL_TYP for RI ...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> getting FIA Evaluation info for: Rhode Island(44)...
#> ================================================================================
#>
#> getting data for Rhode Island...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting COND for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> 44 - ppsa.EVALID IN(442200)
#> downloading and extracting TREE for RI ...
#>
#> ## STATUS: Getting tree data from TREE (RI) ...
#> saving tree table...
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( RI )...
#> saving plot table...
#> saving cond table...
#> saving pop_plot_stratum_assgn table...
#> saving ref_species...
#> saving pltcnt table...
#> $dbqueries
#> $dbqueries$`Rhode Island`
#> $dbqueries$`Rhode Island`$pltcond
#> [1] "select p.CN, p.PREV_PLT_CN, p.INVYR, p.STATECD, p.CYCLE, p.SUBCYCLE, p.UNITCD, p.COUNTYCD, p.PLOT, p.PLOT_STATUS_CD, p.PLOT_NONSAMPLE_REASN_CD, p.SAMP_METHOD_CD, p.SUBP_EXAMINE_CD, p.MANUAL, p.MACRO_BREAKPOINT_DIA, p.INTENSITY, p.MEASYEAR, p.MEASMON, p.MEASDAY, p.REMPER, p.KINDCD, p.DESIGNCD, p.RDDISTCD, p.WATERCD, p.LON, p.LAT, p.ELEV, p.GROW_TYP_CD, p.MORT_TYP_CD, p.P2PANEL, p.P3PANEL, p.SUBPANEL, p.DECLINATION, p.NF_PLOT_STATUS_CD, p.NF_PLOT_NONSAMPLE_REASN_CD, p.NF_SAMPLING_STATUS_CD, p.P2VEG_SAMPLING_STATUS_CD, p.P2VEG_SAMPLING_LEVEL_DETAIL_CD, p.INVASIVE_SAMPLING_STATUS_CD, p.INVASIVE_SPECIMEN_RULE_CD, p.DESIGNCD_P2A, p.QA_STATUS, p.MODIFIED_DATE, c.PLT_CN, c.CONDID, c.COND_STATUS_CD, c.COND_NONSAMPLE_REASN_CD, c.RESERVCD, c.OWNCD, c.OWNGRPCD, c.ADFORCD, c.FORTYPCD, c.FLDTYPCD, c.MAPDEN, c.STDAGE, c.STDSZCD, c.FLDSZCD, c.SITECLCD, c.SICOND, c.SIBASE, c.SISP, c.STDORGCD, c.STDORGSP, c.PROP_BASIS, c.CONDPROP_UNADJ, c.MICRPROP_UNADJ, c.SUBPPROP_UNADJ, c.MACRPROP_UNADJ, c.SLOPE, c.ASPECT, c.PHYSCLCD, c.GSSTKCD, c.ALSTKCD, c.DSTRBCD1, c.DSTRBYR1, c.DSTRBCD2, c.DSTRBYR2, c.DSTRBCD3, c.DSTRBYR3, c.TRTCD1, c.TRTYR1, c.TRTCD2, c.TRTYR2, c.TRTCD3, c.TRTYR3, c.PRESNFCD, c.BALIVE, c.FLDAGE, c.FORTYPCDCALC, c.HABTYPCD1, c.HABTYPCD2, c.LIVE_CANOPY_CVR_PCT, c.LIVE_MISSING_CANOPY_CVR_PCT, c.CANOPY_CVR_SAMPLE_METHOD_CD, c.CARBON_DOWN_DEAD, c.CARBON_LITTER, c.CARBON_SOIL_ORG, c.CARBON_UNDERSTORY_AG, c.CARBON_UNDERSTORY_BG, c.NF_COND_STATUS_CD, c.NF_COND_NONSAMPLE_REASN_CD, c.LAND_COVER_CLASS_CD \nfrom POP_PLOT_STRATUM_ASSGN ppsa\nJOIN PLOT p ON (p.CN = ppsa.PLT_CN) \nJOIN COND c ON (c.PLT_CN = p.CN) \nwhere ppsa.EVALID IN(442200)"
#>
#> $dbqueries$`Rhode Island`$tree
#> [1] "SELECT DISTINCT t.CN, t.PLT_CN, t.PREV_TRE_CN, t.SUBP, t.TREE, t.CONDID, t.STATUSCD, t.SPCD, t.SPGRPCD, t.DIA, t.HT, t.ACTUALHT, t.HTCD, t.TREECLCD, t.CR, t.CCLCD, t.AGENTCD, t.CULL, t.DECAYCD, t.STOCKING, t.WDLDSTEM, t.MORTYR, t.UNCRCD, t.BHAGE, t.TOTAGE, t.MORTCD, t.MIST_CL_CD, t.STANDING_DEAD_CD, t.PREV_STATUS_CD, t.PREV_WDLDSTEM, t.RECONCILECD, t.PREVDIA, t.VOLCFGRS, t.VOLCFGRS_BARK, t.VOLCFGRS_STUMP, t.VOLCFGRS_STUMP_BARK, t.VOLCFGRS_TOP, t.VOLCFGRS_TOP_BARK, t.VOLCFNET, t.VOLCFNET_BARK, t.VOLCFSND, t.VOLCFSND_BARK, t.VOLCFSND_STUMP, t.VOLCFSND_STUMP_BARK, t.VOLCFSND_TOP, t.VOLCFSND_TOP_BARK, t.VOLCSGRS, t.VOLCSGRS_BARK, t.VOLCSNET, t.VOLCSNET_BARK, t.VOLCSSND, t.VOLCSSND_BARK, t.VOLTSGRS, t.VOLTSGRS_BARK, t.VOLTSSND, t.VOLTSSND_BARK, t.VOLBFGRS, t.VOLBFNET, t.VOLBSGRS, t.VOLBSNET, t.TPA_UNADJ, t.DRYBIO_AG, t.DRYBIO_BG, t.DRYBIO_BOLE, t.DRYBIO_BOLE_BARK, t.DRYBIO_BRANCH, t.DRYBIO_FOLIAGE, t.DRYBIO_SAWLOG, t.DRYBIO_SAWLOG_BARK, t.DRYBIO_STEM, t.DRYBIO_STEM_BARK, t.DRYBIO_STUMP, t.DRYBIO_STUMP_BARK, t.CARBON_BG, t.CARBON_AG\nFROM POP_PLOT_STRATUM_ASSGN ppsa\nJOIN PLOT p ON (p.CN = ppsa.PLT_CN)\nJOIN TREE t ON (t.PLT_CN = p.CN)\nWHERE ppsa.EVALID IN(442200)"
#>
#>
#>
#> $pltcnt
#> STABBR STATECD INVYR PLOT_STATUS NBRPLTS
#> 1 RI 44 2016 Nonsampled 4
#> 2 RI 44 2016 Sampled-Forest 18
#> 3 RI 44 2016 Sampled-Nonforest 16
#> 4 Subtotal 38
#> 41 RI 44 2017 Nonsampled 9
#> 5 RI 44 2017 Sampled-Forest 18
#> 6 RI 44 2017 Sampled-Nonforest 13
#> 8 Subtotal 40
#> 7 RI 44 2018 Nonsampled 3
#> 81 RI 44 2018 Sampled-Forest 21
#> 9 RI 44 2018 Sampled-Nonforest 14
#> 12 Subtotal 38
#> 10 RI 44 2019 Nonsampled 4
#> 11 RI 44 2019 Sampled-Forest 17
#> 121 RI 44 2019 Sampled-Nonforest 15
#> 16 Subtotal 36
#> 13 RI 44 2020 Nonsampled 4
#> 14 RI 44 2020 Sampled-Forest 21
#> 15 RI 44 2020 Sampled-Nonforest 12
#> 20 Subtotal 37
#> 161 RI 44 2021 Nonsampled 9
#> 17 RI 44 2021 Sampled-Forest 12
#> 18 RI 44 2021 Sampled-Nonforest 20
#> 24 Subtotal 41
#> 19 RI 44 2022 Nonsampled 2
#> 201 RI 44 2022 Sampled-Forest 22
#> 21 RI 44 2022 Sampled-Nonforest 14
#> 28 Subtotal 38
#> 29 Total 268
## Read in data from outfolder
plt <- read.csv(file.path(outfolder, "plot.csv"), stringsAsFactors=FALSE)
head(plt)
#> CN PREV_PLT_CN INVYR STATECD CYCLE SUBCYCLE UNITCD COUNTYCD PLOT
#> 1 3.0523e+14 1.689988e+14 2016 44 7 4 1 7 343
#> 2 3.0523e+14 2.213545e+14 2016 44 7 4 1 9 68
#> 3 3.0523e+14 1.689988e+14 2016 44 7 4 1 7 119
#> 4 3.0523e+14 1.689987e+14 2016 44 7 4 1 7 62
#> 5 3.0523e+14 1.689988e+14 2016 44 7 4 1 9 342
#> 6 3.0523e+14 1.689988e+14 2016 44 7 4 1 5 319
#> PLOT_STATUS_CD PLOT_NONSAMPLE_REASN_CD SAMP_METHOD_CD SUBP_EXAMINE_CD MANUAL
#> 1 2 NA 2 4 7
#> 2 3 2 1 4 7
#> 3 1 NA 1 4 7
#> 4 1 NA 1 4 7
#> 5 1 NA 1 4 7
#> 6 2 NA 2 4 7
#> MACRO_BREAKPOINT_DIA INTENSITY MEASYEAR MEASMON MEASDAY REMPER KINDCD
#> 1 NA 1 2016 6 1 6.0 2
#> 2 NA 1 2016 5 13 NA 1
#> 3 NA 1 2016 6 22 5.4 2
#> 4 NA 1 2016 7 20 5.9 2
#> 5 NA 1 2016 6 14 5.8 2
#> 6 NA 1 2016 6 1 6.0 2
#> DESIGNCD RDDISTCD WATERCD LON_PUBLIC LAT_PUBLIC ELEV_PUBLIC GROW_TYP_CD
#> 1 1 NA NA -71.34652 41.77542 30 2
#> 2 1 NA NA -71.51607 41.49760 250 NA
#> 3 1 2 0 -71.38642 41.97530 140 2
#> 4 1 1 0 -71.49510 41.84011 190 2
#> 5 1 5 2 -71.46445 41.60411 80 2
#> 6 1 NA NA -71.36327 41.53429 0 2
#> MORT_TYP_CD P2PANEL P3PANEL SUBPANEL DECLINATION NF_PLOT_STATUS_CD
#> 1 2 2 NA 0 NA NA
#> 2 NA 3 3 0 NA NA
#> 3 2 2 NA 0 NA NA
#> 4 2 2 NA 0 NA NA
#> 5 2 2 NA 0 NA NA
#> 6 2 2 NA 0 NA NA
#> NF_PLOT_NONSAMPLE_REASN_CD NF_SAMPLING_STATUS_CD P2VEG_SAMPLING_STATUS_CD
#> 1 NA NA 0
#> 2 NA 0 1
#> 3 NA 0 0
#> 4 NA 0 0
#> 5 NA 0 0
#> 6 NA NA 0
#> P2VEG_SAMPLING_LEVEL_DETAIL_CD INVASIVE_SAMPLING_STATUS_CD
#> 1 NA 0
#> 2 1 1
#> 3 NA 0
#> 4 NA 0
#> 5 NA 0
#> 6 NA 0
#> INVASIVE_SPECIMEN_RULE_CD DESIGNCD_P2A QA_STATUS MODIFIED_DATE NBRCND
#> 1 NA NA 1 2025-01-21 08:46:18 1
#> 2 1 NA 1 2025-01-21 08:46:18 1
#> 3 NA NA 1 2025-01-21 08:46:18 2
#> 4 NA NA 1 2025-01-10 12:44:25 2
#> 5 NA NA 1 2025-01-21 08:46:18 1
#> 6 NA NA 1 2025-01-10 11:15:06 1
#> NBRCNDSAMP NBRCNDFOR NBRCNDFTYP CCLIVEPLT FORNONSAMP
#> 1 1 0 0 27.00 Sampled-Nonforest
#> 2 0 0 0 85.00 Nonsampled-Denied access
#> 3 2 1 1 51.33 Sampled-Forest
#> 4 2 1 1 21.25 Sampled-Forest
#> 5 1 1 1 96.00 Sampled-Forest
#> 6 1 0 0 0.00 Sampled-Nonforest
#> PLOT_ID
#> 1 PID440100700343
#> 2 PID440100900068
#> 3 PID440100700119
#> 4 PID440100700062
#> 5 PID440100900342
#> 6 PID440100500319
Example 5: Most current evaluation for multiple evalTypes (‘ALL’, ‘VOL’, ‘GRM’)
dat5 <- DBgetPlots(states = "Rhode Island",
datsource = "datamart",
eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
Type = c("VOL", "CHNG", "P2VEG")))
#> downloading and extracting SURVEY for RI ...
#> downloading and extracting POP_EVAL for RI ...
#> downloading and extracting POP_EVAL_GRP for RI ...
#> downloading and extracting POP_EVAL_TYP for RI ...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> getting FIA Evaluation info for: Rhode Island(44)...
#> ================================================================================
#>
#> getting data for Rhode Island...
#> downloading and extracting PLOT for RI ...
#> downloading and extracting COND for RI ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for RI ...
#> 44 - ppsa.EVALID IN(442201, 442203, 442210)
#>
#> ## STATUS: GETTING PLOT/COND CHANGE DATA ( RI ) ...
#>
#> ## STATUS: Getting change data from SUBP_COND_CHNG_MTRX (RI) ...
#> downloading and extracting SUBP_COND_CHNG_MTRX for RI ...
#> downloading and extracting TREE for RI ...
#>
#> ## STATUS: Getting tree data from TREE (RI) ...
#>
#> ## STATUS: Getting veg data from P2VEG_SUBPLOT_SPP/P2VEG_SUBP_STRUCTURE (RI) ...
#> downloading and extracting P2VEG_SUBPLOT_SPP for RI ...
#> P2VEG_SUBPLOT_SPP has 0 rows
#> downloading and extracting P2VEG_SUBP_STRUCTURE for RI ...
#> no p2veg species data for RI
#> SELECT DISTINCT v.
#> FROM POP_PLOT_STRATUM_ASSGN ppsa
#> JOIN PLOT p ON (p.CN = ppsa.PLT_CN)
#> JOIN P2VEG_SUBPLOT_SPP v ON v.PLT_CN = p.CN
#> WHERE ppsa.EVALID IN (442210)
#>
#> ## STATUS: Getting subplot data from SUBPLOT/SUBP_COND (RI) ...
#> downloading and extracting SUBPLOT for RI ...
#> downloading and extracting SUBP_COND for RI ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( RI )...
names(dat5)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "pop_plot_stratum_assgn"
#> [7] "evalid" "pltcnt" "invyrs"
#> [10] "evalInfo" "ref_species" "args"
tabs5 <- dat5$tabs
names(tabs5)
#> [1] "pltu" "condu" "subp_cond_chng_mtrx"
#> [4] "tree" "p2veg_subp_structure" "subplot"
#> [7] "subp_cond" "plt" "cond"
ppsa5 <- dat5$pop_plot_stratum_assgn
table(ppsa5$EVALID)
#>
#> 442201 442203 442210
#> 234 207 15
Example 6: Get data for a set of evalids
dat6 <- DBgetPlots(eval = "FIA",
eval_opts = eval_options(Cur = TRUE,
evalid = c(101800, 101801, 101803)))
#> downloading and extracting SURVEY for DE ...
#> downloading and extracting POP_EVAL for DE ...
#> downloading and extracting POP_EVAL_GRP for DE ...
#> downloading and extracting POP_EVAL_TYP for DE ...
#> downloading and extracting PLOT for DE ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for DE ...
#> ================================================================================
#>
#> getting data for Delaware...
#> downloading and extracting PLOT for DE ...
#> downloading and extracting COND for DE ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for DE ...
#> 10 - ppsa.EVALID IN(101800, 101801, 101803)
#> downloading and extracting TREE for DE ...
#>
#> ## STATUS: Getting tree data from TREE (DE) ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( DE )...
names(dat6)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "pop_plot_stratum_assgn"
#> [7] "evalid" "pltcnt" "invyrs"
#> [10] "evalInfo" "ref_species" "args"
tabs6 <- dat6$tabs
names(tabs6)
#> [1] "tree" "plt" "cond"
ppsa6 <- dat6$pop_plot_stratum_assgn
table(ppsa6$EVALID)
#>
#> 101800 101801 101803
#> 436 397 374
Example 7: Get data by Endyr
dat7 <- DBgetPlots(states = c("Connecticut"),
eval = "FIA",
eval_opts = eval_options(evalType = "ALL",
Endyr = 2017))
#> the parameter evalType is deprecated... use 'Type'
#> downloading and extracting SURVEY for CT ...
#> downloading and extracting POP_EVAL for CT ...
#> downloading and extracting POP_EVAL_GRP for CT ...
#> downloading and extracting POP_EVAL_TYP for CT ...
#> downloading and extracting PLOT for CT ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for CT ...
#> getting FIA Evaluation info for: Connecticut(9)...
#> ================================================================================
#>
#> getting data for Connecticut...
#> downloading and extracting PLOT for CT ...
#> downloading and extracting COND for CT ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for CT ...
#> 9 - ppsa.EVALID IN(91700)
#> downloading and extracting TREE for CT ...
#>
#> ## STATUS: Getting tree data from TREE (CT) ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( CT )...
names(dat7)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "pop_plot_stratum_assgn"
#> [7] "evalid" "pltcnt" "invyrs"
#> [10] "evalInfo" "ref_species" "args"
tabs7 <- dat7$tabs
names(tabs7)
#> [1] "tree" "plt" "cond"
ppsa7 <- dat7$pop_plot_stratum_assgn
table(ppsa7$EVALID)
#>
#> 91700
#> 537
Example 8: Get data for multiple inventory years
dat8 <- DBgetPlots(states = "Vermont",
eval = "custom",
eval_opts = eval_options(invyrs = 2012:2014,
evalType = "ALL"))
#> the parameter evalType is deprecated... use 'Type'
#> downloading and extracting SURVEY for VT ...
#> downloading and extracting POP_EVAL for VT ...
#> downloading and extracting POP_EVAL_GRP for VT ...
#> downloading and extracting POP_EVAL_TYP for VT ...
#> downloading and extracting PLOT for VT ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for VT ...
#> ================================================================================
#>
#> getting data for Vermont...
#> downloading and extracting PLOT for VT ...
#> downloading and extracting COND for VT ...
#> 50 - p.STATECD IN(50) and p.INVYR IN(2012, 2013, 2014) and p.SUBCYCLE <> 99
#> downloading and extracting TREE for VT ...
#>
#> ## STATUS: Getting tree data from TREE (VT) ...
names(dat8)
#> [1] "states" "tabs" "tabIDs" "dbqueries" "puniqueid" "pltcnt"
#> [7] "invyrs" "evalInfo" "args"
tabs8 <- dat8$tabs
names(tabs8)
#> [1] "tree" "plt" "cond"
plt8 <- tabs8$plt
table(plt8$INVYR)
#>
#> 2012 2013 2014
#> 240 239 167
Example 9: Get data for periodic inventory
dat9 <- DBgetPlots(states = "Wyoming",
invtype = "PERIODIC",
eval = "FIA",
eval_opts = list(Cur = TRUE,
evalType = "VOL"))
#> downloading and extracting SURVEY for WY ...
#> downloading and extracting POP_EVAL for WY ...
#> downloading and extracting POP_EVAL_GRP for WY ...
#> downloading and extracting POP_EVAL_TYP for WY ...
#> downloading and extracting PLOT for WY ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for WY ...
#> getting FIA Evaluation info for: Wyoming(56)...
#> ================================================================================
#>
#> getting data for Wyoming...
#> downloading and extracting PLOT for WY ...
#> downloading and extracting COND for WY ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for WY ...
#> 56 - ppsa.EVALID IN(560001)
#> downloading and extracting TREE for WY ...
#>
#> ## STATUS: Getting tree data from TREE (WY) ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( WY )...
names(dat9)
#> [1] "states" "tabs" "tabIDs"
#> [4] "dbqueries" "puniqueid" "pop_plot_stratum_assgn"
#> [7] "evalid" "pltcnt" "invyrs"
#> [10] "evalInfo" "ref_species" "args"
tabs9 <- dat9$tabs
names(tabs9)
#> [1] "tree" "plt" "cond"
plt9 <- tabs9$plt
table(plt9$STATECD, plt9$INVYR)
#>
#> 2000
#> 56 9956
Example 10: Intensity
The objective of this section is to understand the differences when using INTENSITY=1.
dat10 <- DBgetPlots(states = "Vermont",
eval = "FIA",
eval_opts = list(Cur = TRUE,
Type = "ALL"),
intensity1 = TRUE,
issp = TRUE)
#> downloading and extracting SURVEY for VT ...
#> downloading and extracting POP_EVAL for VT ...
#> downloading and extracting POP_EVAL_GRP for VT ...
#> downloading and extracting POP_EVAL_TYP for VT ...
#> downloading and extracting PLOT for VT ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for VT ...
#> getting FIA Evaluation info for: Vermont(50)...
#> issp=TRUE, but getxy = FALSE... changing getxy = TRUE
#> getting most current data for XY
#> ================================================================================
#>
#> getting data for Vermont...
#> downloading and extracting PLOT for VT ...
#> downloading and extracting COND for VT ...
#> downloading and extracting POP_PLOT_STRATUM_ASSGN for VT ...
#> 50 - ppsa.EVALID IN(502300) and p.INTENSITY = '1'
#> downloading and extracting POP_EVAL for VT ...
#> downloading and extracting POP_EVAL_GRP for VT ...
#> downloading and extracting POP_EVAL_TYP for VT ...
#> WITH
#> maxyear AS
#> (SELECT distinct p.STATECD, p.UNITCD, p.COUNTYCD, p.PLOT, MAX(p.INVYR) maxyr
#> FROM XYdf p
#> INNER JOIN SURVEY survey
#> ON (survey.CN = p.SRV_CN AND survey.ANN_INVENTORY = 'Y')
#> WHERE p.STATECD in(50) and p.PLOT_STATUS_CD <> 3 and p.SUBCYCLE <> 99 and p.INTENSITY IN ('1')
#> GROUP BY p.STATECD, p.UNITCD, p.COUNTYCD, p.PLOT)
#> SELECT xy.CN, xy.LON, xy.LAT, xy.MEASYEAR, xy.PLOT_STATUS_CD, xy.INVYR, xy.INTENSITY, xy.STATECD, xy.UNITCD, xy.COUNTYCD, xy.PLOT
#> FROM XYdf xy
#> INNER JOIN maxyear ON (xy.STATECD = maxyear.STATECD and xy.UNITCD = maxyear.UNITCD and xy.COUNTYCD = maxyear.COUNTYCD and xy.PLOT = maxyear.PLOT and xy.INVYR = maxyear.maxyr)
#> downloading and extracting TREE for VT ...
#>
#> ## STATUS: Getting tree data from TREE (VT) ...
#>
#> ## STATUS: GETTING POP_PLOT_STRATUM_ASSGN DATA ( VT )...
tabs10 <- dat10$tabs
plt10 <- tabs10$plt
table(plt10$INVYR)
#>
#> 2017 2018 2019 2020 2021 2022 2023
#> 150 140 155 148 146 151 147
spxy10 <- dat10$xyCur_PUBLIC
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4