Glyoxal and methylglyoxal, by-products of sugar metabolism that are present in all cells, can react with, and thus damage, DNA. Indeed, glycation of guanine (G) is as prevalent as the major product of oxidative damage in DNA, 8-oxo-dG. Richarme et al. show that both prokaryotes and eukaryotes have dedicated systems that specifically repair glycation damage (see the Perspective by Dingler and Patel). The parkinsonism-associated protein DJ-1/Park7 and its bacterial homologs Hsp31, YhbO, and YajL direct the enzymatic repair of damaged glycated bases in DNA. The proteins also clean up the more vulnerable pool of free nucleotides in the cell, which are more susceptible to glycation than the nucleotides within DNA.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4