Noble gasses can make covalent bonds. This has been clearly shown for ArH+ as is evidenced by the observation of this molecule ubiquitously in the interstellar medium. In order to augment the list of potential noble gas molecules, highly-accurate quartic field methods are employed here to analyze the ArNH+ radical cation for the first time. This study is in line with previous examinations of ArOH+, ArH2+, and ArH3+. It is shown here that the Arsbnd N bond strength falls below the Arsbnd O bond energy in ArOH+ but in line with that from ArH2+ indicating that ArNH+ could certainly be synthesized in the lab or, potentially, in nature. In order to aid in the search for this noble gas molecular cation, spectroscopic constants, fundamental vibrational frequencies, absorption intensities, and the center-of-mass dipole moment are provided at high-level in order to augment our understanding of noble gas chemistry.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4