In this paper, an evolutionary multi-objective optimization approach is employed to design a static synchronous series compensator (SSSC)-based controller. The design objective is to improve the transient performance of a power system subjected to a severe disturbance by damping the multi-modal oscillations namely; local mode, inter-area mode and inter-plant mode. A genetic algorithm (GA)-based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimization problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented and compared with a PI controller under various disturbances namely; three-phase fault, line outage, loss of load and unbalanced faults to show the effectiveness and robustness of the proposed approach.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4