A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://ui.adsabs.harvard.edu/abs/2007Tectp.431...33F below:

Website Navigation


Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks

Abstract

We propose a mechanism for the low frequency electromagnetic emissions and other electromagnetic and electric phenomena which have been associated with earthquakes. The mechanism combines the critical earthquake concept and the concept of crust acting as a charging electric battery under increasing stress. The electric charges are released by activation of dormant charge carriers in the oxygen anion sublattice, called peroxy bonds or positive hole pairs (PHP), where a PHP represents an O 3X/ OOYO 3 with X,Y = Si 4+,Al 3+,…, i.e. O - in a matrix of O 2 - of silicates. We propose that PHP are activated by plastic deformations during the slow cooperative build-up of stress and the increasingly correlated damage culminating in a large "critical" earthquake. Recent laboratory experiments indeed show that stressed rocks form electric batteries which can release their charge when a conducting path closes the equivalent electric circuit. We conjecture that the intermittent and erratic occurrences of EM signals are a consequence of the progressive build-up of the battery charges in the Earth crust and of their release when crack networks percolate through the stressed rock volumes, providing a conductive pathway for the battery currents to discharge. EM signals are thus expected close to the rupture, either slightly before or after, that is, when percolation is most favored. The proposed mechanism should be relevant for the broader understanding of fractoemissions.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4