A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://timsong-cpp.github.io/cppwp/n4659/sf.cmath below:

[sf.cmath]

29 Numerics library [numerics] 29.9 Mathematical functions for floating-point types [c.math] 29.9.5 Mathematical special functions [sf.cmath]

If any argument value to any of the functions specified in this subclause is a NaN (Not a Number), the function shall return a NaN but it shall not report a domain error. Otherwise, the function shall report a domain error for just those argument values for which:

Unless otherwise specified, each function is defined for all finite values, for negative infinity, and for positive infinity.

29.9.5.1 Associated Laguerre polynomials [sf.cmath.assoc_laguerre]

double assoc_laguerre(unsigned n, unsigned m, double x); float assoc_laguerref(unsigned n, unsigned m, float x); long double assoc_laguerrel(unsigned n, unsigned m, long double x);

Effects: These functions compute the associated Laguerre polynomials of their respective arguments n, m, and x.

Returns:

Lmn(x)=(1)mdmdxmLn+m(x),for x0

where n is n, m is m, and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if n >= 128 or if m >= 128.

29.9.5.2 Associated Legendre functions [sf.cmath.assoc_legendre]

double assoc_legendre(unsigned l, unsigned m, double x); float assoc_legendref(unsigned l, unsigned m, float x); long double assoc_legendrel(unsigned l, unsigned m, long double x);

Effects: These functions compute the associated Legendre functions of their respective arguments l, m, and x.

Returns:

Pm(x)=(1x2)m/2dmdxmP(x),for |x|1

where l is l, m is m, and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.

29.9.5.3 Beta function [sf.cmath.beta]

double beta(double x, double y); float betaf(float x, float y); long double betal(long double x, long double y);

Effects: These functions compute the beta function of their respective arguments x and y.

Returns:

B(x,y)=Γ(x)Γ(y)Γ(x+y),for x>0,y>0

where x is x and y is y.

29.9.5.4 Complete elliptic integral of the first kind [sf.cmath.comp_ellint_1]

double comp_ellint_1(double k); float comp_ellint_1f(float k); long double comp_ellint_1l(long double k);

Effects: These functions compute the complete elliptic integral of the first kind of their respective arguments k.

Returns:

K(k)=F(k,π/2),for |k|1

where k is k.

29.9.5.5 Complete elliptic integral of the second kind [sf.cmath.comp_ellint_2]

double comp_ellint_2(double k); float comp_ellint_2f(float k); long double comp_ellint_2l(long double k);

Effects: These functions compute the complete elliptic integral of the second kind of their respective arguments k.

Returns:

E(k)=E(k,π/2),for |k|1

where k is k.

29.9.5.6 Complete elliptic integral of the third kind [sf.cmath.comp_ellint_3]

double comp_ellint_3(double k, double nu); float comp_ellint_3f(float k, float nu); long double comp_ellint_3l(long double k, long double nu);

Effects: These functions compute the complete elliptic integral of the third kind of their respective arguments k and nu.

Returns:

Π(ν,k)=Π(ν,k,π/2),for |k|1

where k is k and ν is nu.

29.9.5.7 Regular modified cylindrical Bessel functions [sf.cmath.cyl_bessel_i]

double cyl_bessel_i(double nu, double x); float cyl_bessel_if(float nu, float x); long double cyl_bessel_il(long double nu, long double x);

Effects: These functions compute the regular modified cylindrical Bessel functions of their respective arguments nu and x.

Returns:

Iν(x)=iνJν(ix)=k=0(x/2)ν+2kk!Γ(ν+k+1),for x0

where ν is nu and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.

29.9.5.8 Cylindrical Bessel functions of the first kind [sf.cmath.cyl_bessel_j]

double cyl_bessel_j(double nu, double x); float cyl_bessel_jf(float nu, float x); long double cyl_bessel_jl(long double nu, long double x);

Effects: These functions compute the cylindrical Bessel functions of the first kind of their respective arguments nu and x.

Returns:

Jν(x)=k=0(1)k(x/2)ν+2kk!Γ(ν+k+1),for x0

where ν is nu and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.

29.9.5.9 Irregular modified cylindrical Bessel functions [sf.cmath.cyl_bessel_k]

double cyl_bessel_k(double nu, double x); float cyl_bessel_kf(float nu, float x); long double cyl_bessel_kl(long double nu, long double x);

Effects: These functions compute the irregular modified cylindrical Bessel functions of their respective arguments nu and x.

Returns:

Kν(x)=(π/2)iν+1(Jν(ix)+iNν(ix))=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪π2Iν(x)Iν(x)sinνπ,for x0 and non-integral νπ2limμνIμ(x)Iμ(x)sinμπ,for x0 and integral ν

where ν is nu and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.

29.9.5.10 Cylindrical Neumann functions [sf.cmath.cyl_neumann]

double cyl_neumann(double nu, double x); float cyl_neumannf(float nu, float x); long double cyl_neumannl(long double nu, long double x);

Effects: These functions compute the cylindrical Neumann functions, also known as the cylindrical Bessel functions of the second kind, of their respective arguments nu and x.

Returns:

Nν(x)=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪Jν(x)cosνπJν(x)sinνπ,for x0 and non-integral νlimμνJμ(x)cosμπJμ(x)sinμπ,for x0 and integral ν

where ν is nu and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.

29.9.5.11 Incomplete elliptic integral of the first kind [sf.cmath.ellint_1]

double ellint_1(double k, double phi); float ellint_1f(float k, float phi); long double ellint_1l(long double k, long double phi);

Effects: These functions compute the incomplete elliptic integral of the first kind of their respective arguments k and phi (phi measured in radians).

Returns:

F(k,ϕ)=ϕ0dθ1k2sin2θ,for |k|1

where k is k and φ is phi.

29.9.5.12 Incomplete elliptic integral of the second kind [sf.cmath.ellint_2]

double ellint_2(double k, double phi); float ellint_2f(float k, float phi); long double ellint_2l(long double k, long double phi);

Effects: These functions compute the incomplete elliptic integral of the second kind of their respective arguments k and phi (phi measured in radians).

Returns:

E(k,ϕ)=ϕ01k2sin2θdθ,for |k|1

where k is k and φ is phi.

29.9.5.13 Incomplete elliptic integral of the third kind [sf.cmath.ellint_3]

double ellint_3(double k, double nu, double phi); float ellint_3f(float k, float nu, float phi); long double ellint_3l(long double k, long double nu, long double phi);

Effects: These functions compute the incomplete elliptic integral of the third kind of their respective arguments k, nu, and phi (phi measured in radians).

Returns:

Π(ν,k,ϕ)=ϕ0dθ(1νsin2θ)1k2sin2θ,for |k|1

where ν is nu, k is k, and φ is phi.

29.9.5.14 Exponential integral [sf.cmath.expint]

double expint(double x); float expintf(float x); long double expintl(long double x);

Effects: These functions compute the exponential integral of their respective arguments x.

Returns:

Ei(x)=xettdt

where x is x.

29.9.5.15 Hermite polynomials [sf.cmath.hermite]

double hermite(unsigned n, double x); float hermitef(unsigned n, float x); long double hermitel(unsigned n, long double x);

Effects: These functions compute the Hermite polynomials of their respective arguments n and x.

Returns:

Hn(x)=(1)nex2dndxnex2

where n is n and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.

29.9.5.16 Laguerre polynomials [sf.cmath.laguerre]

double laguerre(unsigned n, double x); float laguerref(unsigned n, float x); long double laguerrel(unsigned n, long double x);

Effects: These functions compute the Laguerre polynomials of their respective arguments n and x.

Returns:

Ln(x)=exn!dndxn(xnex),for x0

where n is n and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.

29.9.5.17 Legendre polynomials [sf.cmath.legendre]

double legendre(unsigned l, double x); float legendref(unsigned l, float x); long double legendrel(unsigned l, long double x);

Effects: These functions compute the Legendre polynomials of their respective arguments l and x.

Returns:

P(x)=12!ddx(x21),for |x|1

where l is l and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.

29.9.5.18 Riemann zeta function [sf.cmath.riemann_zeta]

double riemann_zeta(double x); float riemann_zetaf(float x); long double riemann_zetal(long double x);

Effects: These functions compute the Riemann zeta function of their respective arguments x.

Returns:

ζ(x)=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪k=1kx,for x>11121xk=1(1)k1kx,for 0x12xπx1sin(πx2)Γ(1x)ζ(1x),for x<0

where x is x.

29.9.5.19 Spherical Bessel functions of the first kind [sf.cmath.sph_bessel]

double sph_bessel(unsigned n, double x); float sph_besself(unsigned n, float x); long double sph_bessell(unsigned n, long double x);

Effects: These functions compute the spherical Bessel functions of the first kind of their respective arguments n and x.

Returns:

jn(x)=(π/2x)1/2Jn+1/2(x),for x0

where n is n and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.

29.9.5.20 Spherical associated Legendre functions [sf.cmath.sph_legendre]

double sph_legendre(unsigned l, unsigned m, double theta); float sph_legendref(unsigned l, unsigned m, float theta); long double sph_legendrel(unsigned l, unsigned m, long double theta);

Effects: These functions compute the spherical associated Legendre functions of their respective arguments l, m, and theta (theta measured in radians).

Returns:

Ym(θ,0)

where

Ym(θ,ϕ)=(1)m[(2+1)4π(m)!(+m)!]1/2Pm(cosθ)eimϕ,for |m|

and l is l, m is m, and θ is theta.

Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.

29.9.5.21 Spherical Neumann functions [sf.cmath.sph_neumann]

double sph_neumann(unsigned n, double x); float sph_neumannf(unsigned n, float x); long double sph_neumannl(unsigned n, long double x);

Effects: These functions compute the spherical Neumann functions, also known as the spherical Bessel functions of the second kind, of their respective arguments n and x.

Returns:

nn(x)=(π/2x)1/2Nn+1/2(x),for x0

where n is n and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4