ARPAV: Dati ambientali, https://www.arpa.veneto.it, last access: 28 February 2024.âa
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP â historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17â46, https://doi.org/10.1002/joc.1377, 2007.âa
Baroni, C., Bondesan, A., and Mortara, G.: Campagna glaciologica annuale dei ghiacciai italiani, Geogr. Fis. Din. Quat., 38, 229â304, 2015.âa
Berthier, E., Floriciou, D., Gardner, A. S., Gourmelen, N., Jakob, L., Paul, F., Treichler, D., Wouters, B., Belart, J. M., Dehecq, A., Dussaillant, I., Hugonnet, R., Kæb, A., Krieger, L., Pálsson, F., and Zemp, M.: Measuring glacier mass changes from space â a review, Rep. Prog. Phys., 86, 036801, https://doi.org/10.1088/1361-6633/acaf8e, 2023.âa, b
Berthier, E., Lebreton, J., Fontannaz, D., Hosford, S., Belart, J. M.-C., Brun, F., Andreassen, L. M., Menounos, B., and Blondel, C.: The Pléiades Glacier Observatory: high-resolution digital elevation models and ortho-imagery to monitor glacier change, The Cryosphere, 18, 5551â5571, https://doi.org/10.5194/tc-18-5551-2024, 2024.âa
Bhardwaj, A., Sam, L., Bhardwaj, A., and MartÃn-Torres, F. J.: LiDAR remote sensing of the cryosphere: present applications and future prospects, Remote Sens. Environ., 177, 125â143, https://doi.org/10.1016/j.rse.2016.02.031, 2016.âa
Bondesan, A. and Francese, R. G.: The climate-driven disaster of the Marmolada Glacier (Italy), Geomorphology, 431, 108687, https://doi.org/10.1016/j.geomorph.2023.108687, 2023.âa, b
Bosellini, A., Gianolla, P., and Stefani, M.: Geology of the Dolomites, Episodes, 26, 181â185, https://doi.org/10.18814/epiiugs/2003/v26i3/005, 2003.âa
Carrivick, J. L., Smith, M. W., and Quincey, D. J.: Current Applications of Structure from Motion in the Geosciences, John Wiley and Sons, Ltd, https://doi.org/10.1002/9781118895818.ch6, 2016.âa
Castiglioni, B.: Alcuni ghiacciai nelle Dolomiti e il loro ambiente orografico e climatico, Bollettino C.A.I., 42, 323â379, 1925.âa, b
Castiglioni, B.: Risultati di una recente visita ai ghiacciai Cadorini, Mem. Geol. E Geogr. Di G. Dainelli, 1, 291â317, 1930.âa
CGI-CNR: Catasto dei Ghiacciai Italiani, 4 (Ghiacciai delle Tre Venezie e dell'Appennino), Comitato Glaciologico Italiano, Torino, 1962.âa, b, c
Chiarle, M., Iannotti, S., Mortara, G., and Deline, P.: Recent debris flow occurrences associated with glaciers in the Alps, Global Planet. Change, 56, 123â136, https://doi.org/10.1016/j.gloplacha.2006.07.003, 2007.âa
Cibien, M., Ferrarese, L., and Meneghel, F.: The Glaciers of Mount Antelao (Dolomites, Italy) since the Little Ice Age, Geogr. Fis. Din. Quat., 30, 131â139, 2007.âa
Clarke, G. K.: A short history of scientific investigations on glaciers, J. Glaciol., 33, 4â24, https://doi.org/10.3189/s0022143000215785, 1987.âa
Colucci, R. R.: Geomorphic influence on small glacier response to post-Little Ice Age climate warming: Julian Alps, Europe, Earth Surf. Proc. Land., 41, 1227â1240, https://doi.org/10.1002/esp.3908, 2016.âa
Colucci, R. R. and Guglielmin, M.: Precipitation-temperature changes and evolution of a small glacier in the southeastern European Alps during the last 90 years, Int. J. Climatol., 35, 2783â2797, https://doi.org/10.1002/joc.4172, 2015.âa, b
Colucci, R. R. and Žebre, M.: Late Holocene evolution of glaciers in the southeastern Alps, J. Maps, 12, 289â299, https://doi.org/10.1080/17445647.2016.1203216, 2016.âa
Colucci, R. R., Žebre, M., Torma, C. Z., Glasser, N. F., Maset, E., Gobbo, C. D., and Pillon, S.: Recent increases in winter snowfall provide resilience to very small glaciers in the Julian Alps, Europe, Atmosphere-Basel, 12, 1â26, https://doi.org/10.3390/atmos12020263, 2021.âa, b, c, d
Cook, S. J., Jouvet, G., Millan, R., Rabatel, A., Zekollari, H., and Dussaillant, I.: Committed Ice Loss in the European Alps Until 2050 Using a Deep-Learning-Aided 3D Ice-Flow Model With Data Assimilation, Geophys. Res. Lett., 50, e2023GL105029, https://doi.org/10.1029/2023GL105029, 2023.âa
Crepaz, A., Cagnati, A., and Luca, G. D.: Evoluzione dei ghiacciai delle Dolomiti negli ultimi cento anni, Neve e Valanghe, 80, 20â25, 2013.âa
Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R., and Arnaud, Y.: Region-wide annual glacier surface mass balance for the European Alps from 2000 to 2016, Front. Earth Sci., 8, 149, https://doi.org/10.3389/feart.2020.00149, 2020.âa
De Marco, J., Carturan, L., Piermattei, L., Cucchiaro, S., Moro, D., Fontana, G. D., and Cazorzi, F.: Minor imbalance of the lowermost Italian glacier from 2006 to 2019, Water-Sui., 12, 2503, https://doi.org/10.3390/w12092503, 2020.âa
Del Longo, M., Finzi, E., Galgaro, A., Godio, A., Luchetta, A., Pellegrini, G. B., and Zambrano, R.: Responses of the Val D' Arcia small dolomitic glacier (Mount Pelmo, Eastern Alps) to recent climatic changes.Geomorphological and geophysical study, Geogr. Fis. Din. Quat., 24, 43â55, 2001.âa, b
Deline, P.: Recent Brenva Rock Avalanches (Valley of Aosta): new chapter in an old history?, Geogr. Fis. Din. Quat., 5, 55â63, 2001.âa
Fischer, M., Huss, M., Barboux, C., and Hoelzle, M.: The new Swiss Glacier Inventory SGI2010: relevance of using high-resolution source data in areas dominated by very small glaciers, Arct. Antarct. Alp. Res., 46, 933â945, https://doi.org/10.1657/1938-4246-46.4.933, 2014.âa
Fischer, M., Huss, M., Kummert, M., and Hoelzle, M.: Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps, The Cryosphere, 10, 1279â1295, https://doi.org/10.5194/tc-10-1279-2016, 2016.âa
Forte, E., Santin, I., Colucci, R. R., Dossi, M., Guglielmin, M., Pipan, M., Roncoroni, G., and Žebre, M.: GPR data analysis for cold and warm ice detection and characterization in polythermal glaciers, 18th International Conference on Ground Penetrating Radar, Golden, Colorado, 14â19 June 2020, 69â72, https://doi.org/10.1190/gpr2020-019.1, 2020.âa
Gachev, E., Stoyanov, K., and Gikov, A.: Small glaciers on the Balkan Peninsula: state and changes in the last several years, Quatern. Int., 415, 33â54, https://doi.org/10.1016/j.quaint.2015.10.042, 2016.âa
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps â a review, Sci. Total Environ., 493, 1138â1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.âa
Hagg, W., Scotti, R., Villa, F., Mayer, E., Heilig, A., Mayer, C., Tamm, W., and Hock, T.: Evolution of two cirque glaciers in lombardy and their relation to climatic factors (1962â2016), Geogr. Ann. A, 99, 371â386, https://doi.org/10.1080/04353676.2017.1368834, 2017.âa
Harshit, H., Kushwaha, S. K. P., and Jain, K.: GEOMETRIC FEATURES INTERPRETATION OF PHOTOGRAMMETRIC POINT CLOUD FROM UNMANNED AERIAL VEHICLE, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4/W2-2022, 83â88, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-83-2022, 2022.âa
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High mountain areas, IPCC special report on the ocean and cryosphere in a changing climate, 131â202, https://doi.org/10.1017/9781009157964.004, 2019.âa, b
Hughes, P. D.: Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro, Earth Surf. Proc. Land., 32, 1593â1602, https://doi.org/10.1002/esp.1537, 2007.âa
Hughes, P. D.: Little Ice Age glaciers in the Balkans: low altitude glaciation enabled by cooler temperatures and local topoclimatic controls, Earth Surf. Proc. Land., 35, 229â241, https://doi.org/10.1002/esp.1916, 2010.âa
Hughes, P. D.: Little ice age glaciers and climate in the mediterranean mountains: a new analysis, Geographical Research Letters, 44, 15â45, https://doi.org/10.18172/cig.3362, 2018.âa
Hughes, P. D. and Woodward, J. C.: Quaternary glaciation in the Mediterranean mountains: A new synthesis, Geol. Soc. Spec. Publ., 433, 1â23, https://doi.org/10.1144/SP433.14, 2016.âa
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kæb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726â731, https://doi.org/10.1038/s41586-021-03436-z, 2021.âa, b, c
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877â887, https://doi.org/10.5194/tc-7-877-2013, 2013.âa, b
Huss, M., Dhulst, L., and Bauder, A.: New long-term mass-balance series for the Swiss Alps, J. Glaciol., 61, 551â562, https://doi.org/10.3189/2015JoG15J015, 2015.âa
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R., Clague, J., Vuille, M., Buytaert, W., Cayan, D., Greenwood, G., Mark, B., Milner, A., Weingartner, R., and Winder, M.: Toward mountains without permanent snow and ice, Earths Future, 5, 418â435, https://doi.org/10.1002/2016EF000514, 2017.âa
ICCI: State of the Cryosphere 2022 Growing Losses, Global Impacts We cannot negotiate with the melting point of ice, International Cryosphere Climate Initiative, http://www.iccinet.org/statecryo22 (last access: 15 September 2023), 2022.âa
Katz, R. and Glantz, M.: Anatomy of a rainfall index, Mon. Weather Rev., 114, 764â761, 1986.âa
Knoll, C. and Kerschner, H.: A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data, Ann. Glaciol., 50, 46â52, https://doi.org/10.3189/172756410790595903, 2009.âa
Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., Mcneil, C., Dehecq, A., Florentine, C., and Neel, S. O.: Remote sensing of environment Historical Structure from Motion (HSfM): automated processing of historical aerial photographs for long-term topographic change analysis, Remote Sens. Environ., 285, 113379, https://doi.org/10.1016/j.rse.2022.113379, 2023.âa, b
Krainer, K., Lang, K., and Hausmann, H.: Active rock glaciers at Croda Rossa/Hohe Gaisl, Eastern Dolomites (Alto Adige/South Tyrol, Northern Italy), Geogr. Fis. Din. Quat., 33, 25â36, 2010.âa
Krainer, K., Mussner, L., Behm, M., and Hausmann, H.: Multi-disciplinary investigation of an active rock glacier in the Sella Group (Dolomites; Northern Italy), Aust. J. Earth Sci., 105, 48â62, 2012.âa
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z), ISPRS J. Photogramm., 82, 10â26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.âa
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y., Bärtschi, H., and Schmassmann, E.: The new Swiss Glacier Inventory SGI2016: from a topographical to a glaciological dataset, Front. Earth Sci., 9, 704189, https://doi.org/10.3389/feart.2021.704189, 2021.âa
Marcer, M., Stentoft, P. A., Bjerre, E., Cimoli, E., Bjørk, A., Stenseng, L., and Machguth, H.: Three decades of volume change of a small Greenlandic Glacier using ground penetrating radar, structure from motion, and aerial photogrammetry, Arct. Antarct. Alp. Res., 49, 411â425, https://doi.org/10.1657/AAAR0016-049, 2017.âa
Marinelli, O.: I Ghiacciai delle Alpi Venete, Mem. Geografiche. Suppl. Riv. Geogr. Ita., 4, 3â289, 1910.âa
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., SuÅ¡nik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343â1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.âa
Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., and Nicholson, L. I.: Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery, Earth Surf. Proc. Land., 42, 2350â2364, https://doi.org/10.1002/esp.4188, 2017.âa
Midgley, N. G. and Tonkin, T. N.: Reconstruction of former glacier surface topography from archive oblique aerial images, Geomorphology, 282, 18â26, https://doi.org/10.1016/j.geomorph.2017.01.008, 2017.âa
Mishra, N. B., Miles, E. S., Chaudhuri, G., Mainali, K. P., Mal, S., Singh, P. B., and Tiruwa, B.: Quantifying heterogeneous monsoonal melt on a debris-covered glacier in Nepal Himalaya using repeat uncrewed aerial system (UAS) photogrammetry, J. Glaciol., 68, 288â304, https://doi.org/10.1017/jog.2021.96, 2022.âa
Nangeroni, G.: Fenomeni glaciali nel Gruppo di Sella (Dolomiti) â Glacial phenomena in the Sella Group (Dolomites), Bollettino CGI, 18, 105, 1938.âa
Okyay, U., Telling, J., Glennie, C. L., and Dietrich, W. E.: Airborne lidar change detection: an overview of Earth sciences applications, Earth-Sci. Rev., 198, 102929, https://doi.org/10.1016/j.earscirev.2019.102929, 2019.âa
Olivieri, L. and Bettanini, C.: Preliminary observation of Marmolada glacier collapse of July 2022 with space-based cameras, Remote Sens. Lett., 14, 21â29, https://doi.org/10.1080/2150704X.2022.2152754, 2023.âa, b
Panizza, M.: The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment, Geoheritage, 1, 33â42, https://doi.org/10.1007/s12371-009-0003-z, 2009.âa, b
Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C. S., Raup, B., Rivera, A., and Zemp, M.: Recommendations for the compilation of glacier inventory data from digital sources, Ann. Glaciol., 50, 119â126, https://doi.org/10.3189/172756410790595778, 2009.âa
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C.: Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2, Earth Syst. Sci. Data, 12, 1805â1821, https://doi.org/10.5194/essd-12-1805-2020, 2020.âa
Piermattei, L., Carturan, L., and Guarnieri, A.: Use of terrestrial photogrammetry based on structure-from-motion for mass balance estimation of a small glacier in the Italian alps, Earth Surf. Proc. Land., 40, 1791â1802, https://doi.org/10.1002/esp.3756, 2015.âa
Pignatti, E. and Pignatti, S.: Plant Life of the Dolomites, Springer, https://doi.org/10.1007/978-3-642-31043-0, 2014.âa
Porro, C.: Elenco dei ghiacciai italiani â Monografia statistica del generale, Ministero dei lavori pubblici â Servizio idrografico â Ufficio Idrografico del Po, 1925.âa
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Communications Earth and Environment, 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.âa
Richter, E.: Die Gletscher der Ostalpen, Handbücher zur Deutscher Landes und Volkskunde Stuttgart, 1888.âa
Rumpf, S. B., Gravey, M., Brönnimann, O., Luoto, M., Cianfrani, C., Mariethoz, G., and Guisan, A.: From white to green: snow cover loss and increased vegetation productivity in the European Alps, Science, 376, 1119â1122, https://doi.org/10.1126/science.abn6697, 2022.âa
Regione Del Veneto: ARPAV, https://idt2.regione.veneto.it/portfolio/aereofototeca/, last access: 28 February 2024.âa
Santin, I., Colucci, R. R., Žebre, M., Pavan, M., Cagnati, A., and Forte, E.: Recent evolution of Marmolada glacier (Dolomites, Italy) by means of ground and airborne GPR surveys, Remote Sens. Environ., 235, 111442, https://doi.org/10.1016/j.rse.2019.111442, 2019.âa
Santin, I., Forte, E., Nicora, M., Ponti, S., and Guglielmin, M.: Where does a glacier end? Integrated geophysical, geomorphological and photogrammetric measurements to image geometry and ice facies distribution, Catena, 225, 107016, https://doi.org/10.1016/j.catena.2023.107016, 2023.âa
Scotti, R., Brardinoni, F., and Crosta, G. B.: Post-LIA glacier changes along a latitudinal transect in the Central Italian Alps, The Cryosphere, 8, 2235â2252, https://doi.org/10.5194/tc-8-2235-2014, 2014.âa
Securo, A., Gobbo, C. D., and Colucci, R. R.: Multi-year evolution of 75 snow and ice deposits in schachtdolines and shafts of recently deglaciated karst terrain: observations from Mount Canin-Kanin, Julian Alps, Europe, Geomorphology, 417, 108434, https://doi.org/10.1016/j.geomorph.2022.108434, 2022.âa
Securo, A., Del Gobbo, C., Rettig, L., Pillon, S., Luca, A. D., Fontana, D., Fasil, E. B., and Colucci, R. R.: A glacier in transition: surface elevation change, ELA and geomorphic evolution of a very small glacier in the Dolomites (S-E Alps), Geomorphology, 444, 108956, https://doi.org/10.1016/j.geomorph.2023.108956, 2024a.âa
Securo, A., Gobbo, C. D., Baccolo, G., Barbante, C., Citterio, M., Blasi, F. D., Marcer, M., Valt, M., and Colucci, R. R.: The Glaciers of the Dolomites: last 40 years of melting, Zenodo [data set], https://doi.org/10.5281/zenodo.11109783, 2024b.âa
Seppi, R., Zanoner, T., Carton, A., Bondesan, A., Francese, R., Carturan, L., Zumiani, M., Giorgi, M., and Ninfo, A.: Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps), Geomorphology, 228, 71â86, https://doi.org/10.1016/j.geomorph.2014.08.025, 2014.âa
Serrano, E., González Trueba, J. J., Sanjosé, J. J., and Del RÃo, L. M.: Ice patch origin, evolution and dynamics in a temperate high mountain environment: the jou negro, picos de europa (nw spain), Geogr. Ann. A, 93, 57â70, https://doi.org/10.1111/j.1468-0459.2011.00006.x, 2011.âa
Smiraglia, C., Diolaiuti, G., and Azzoni, R.: Il nuovo catasto dei ghiacciai italiani = The new italian glacier inventory, EvK2CNR, ISBN 9788894090802, 2015.âa, b, c, d, e, f
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion photogrammetry in physical geography, Prog. Phys. Geog., 40, 247â275, https://doi.org/10.1177/0309133315615805, 2016. âa
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.: Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century, Nat. Commun., 11, 3209, https://doi.org/10.1038/s41467-020-16818-0, 2020.âa
Tarini, M., Cignoni, P., and Scopigno, R.: Visibility based methods and assessment for detail-recovery, VIS '03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), IEEE Visualization 2003, Seattle, Washington, USA, 19â24 October 2003, p. 60, https://doi.org/10.1109/VISUAL.2003.1250407, 2003.âa
Taylor, J. R.: An Introduction to Error Analysis, University Science Books, ISBN 0935702423, 1997.âa
Voordendag, A., Prinz, R., Schuster, L., and Kaser, G.: Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022, The Cryosphere, 17, 3661â3665, https://doi.org/10.5194/tc-17-3661-2023, 2023.âa
WGMS: Global Glacier Change Bulletin No. 4 (2018â2019), World Glacier Monitoring Service, Zurich, Switzerland, 278Â pp., https://doi.org/10.5904/wgms-fog-2021-05, 2021.âa, b, c, d, e
Zanoner, T., Carton, A., Seppi, R., Carturan, L., Baroni, C., Salvatore, M. C., and Zumiani, M.: Little Ice Age mapping as a tool for identifying hazard in the paraglacial environment: the case study of Trentino (Eastern Italian Alps), Geomorphology, 295, 551â562, https://doi.org/10.1016/j.geomorph.2017.08.014, 2017.âa
Žebre, M., Colucci, R. R., Giorgi, F., Glasser, N. F., Racoviteanu, A. E., and Gobbo, C. D.: 200 years of equilibrium-line altitude variability across the European Alps (1901â2100), Clim. Dynam., 56, 1183â1201, https://doi.org/10.1007/s00382-020-05525-7, 2021.âa, b, c
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance observations: a review of the worldwide monitoring network, Ann. Glaciol., 50, 101â111, https://doi.org/10.3189/172756409787769591, 2009.âa
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382â386, https://doi.org/10.1038/s41586-019-1071-0, 2019.âa
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3