I found it useful to study the examples in the ggplot2 package.
A few things of note:
.r
file in the R
directory of the package.See for examples, the diamonds
dataset:
#' Prices of 50,000 round cut diamonds
#'
#' A dataset containing the prices and other attributes of almost 54,000
#' diamonds. The variables are as follows:
#'
#' \itemize{
#' \item price. price in US dollars (\$326--\$18,823)
#' \item carat. weight of the diamond (0.2--5.01)
#' \item cut. quality of the cut (Fair, Good, Very Good, Premium, Ideal)
#' \item colour. diamond colour, from J (worst) to D (best)
#' \item clarity. a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
#' \item x. length in mm (0--10.74)
#' \item y. width in mm (0--58.9)
#' \item z. depth in mm (0--31.8)
#' \item depth. total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
#' \item table. width of top of diamond relative to widest point (43--95)
#' }
#'
#' @docType data
#' @keywords datasets
#' @name diamonds
#' @usage data(diamonds)
#' @format A data frame with 53940 rows and 10 variables
NULL
This results in a help file that looks like this:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4