A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://stackoverflow.com/questions/15315452/selecting-with-complex-criteria-from-pandas-dataframe below:

python - Selecting with complex criteria from pandas.DataFrame

Sure! Setup:

>>> import pandas as pd
>>> from random import randint
>>> df = pd.DataFrame({'A': [randint(1, 9) for x in range(10)],
                   'B': [randint(1, 9)*10 for x in range(10)],
                   'C': [randint(1, 9)*100 for x in range(10)]})
>>> df
   A   B    C
0  9  40  300
1  9  70  700
2  5  70  900
3  8  80  900
4  7  50  200
5  9  30  900
6  2  80  700
7  2  80  400
8  5  80  300
9  7  70  800

We can apply column operations and get boolean Series objects:

>>> df["B"] > 50
0    False
1     True
2     True
3     True
4    False
5    False
6     True
7     True
8     True
9     True
Name: B
>>> (df["B"] > 50) & (df["C"] != 900)

or

>>> (df["B"] > 50) & ~(df["C"] == 900)
0    False
1    False
2     True
3     True
4    False
5    False
6    False
7    False
8    False
9    False

[Update, to switch to new-style .loc]:

And then we can use these to index into the object. For read access, you can chain indices:

>>> df["A"][(df["B"] > 50) & (df["C"] != 900)]
2    5
3    8
Name: A, dtype: int64

but you can get yourself into trouble because of the difference between a view and a copy doing this for write access. You can use .loc instead:

>>> df.loc[(df["B"] > 50) & (df["C"] != 900), "A"]
2    5
3    8
Name: A, dtype: int64
>>> df.loc[(df["B"] > 50) & (df["C"] != 900), "A"].values
array([5, 8], dtype=int64)
>>> df.loc[(df["B"] > 50) & (df["C"] != 900), "A"] *= 1000
>>> df
      A   B    C
0     9  40  300
1     9  70  700
2  5000  70  900
3  8000  80  900
4     7  50  200
5     9  30  900
6     2  80  700
7     2  80  400
8     5  80  300
9     7  70  800

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4