A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://stackoverflow.com/questions/14941366/pandas-sort-by-group-aggregate-and-column below:

python - Pandas sort by group aggregate and column

Given the following dataframe

In [31]: rand = np.random.RandomState(1)
         df = pd.DataFrame({'A': ['foo', 'bar', 'baz'] * 2,
                            'B': rand.randn(6),
                            'C': rand.rand(6) > .5})

In [32]: df
Out[32]:      A         B      C
         0  foo  1.624345  False
         1  bar -0.611756   True
         2  baz -0.528172  False
         3  foo -1.072969   True
         4  bar  0.865408  False
         5  baz -2.301539   True 

I would like to sort it in groups (A) by the aggregated sum of B, and then by the value in C (not aggregated). So basically get the order of the A groups with

In [28]: df.groupby('A').sum().sort('B')
Out[28]:             B  C
         A               
         baz -2.829710  1
         bar  0.253651  1
         foo  0.551377  1

And then by True/False, so that it ultimately looks like this:

In [30]: df.ix[[5, 2, 1, 4, 3, 0]]
Out[30]: A         B      C
    5  baz -2.301539   True
    2  baz -0.528172  False
    1  bar -0.611756   True
    4  bar  0.865408  False
    3  foo -1.072969   True
    0  foo  1.624345  False

How can this be done?

asked Feb 18, 2013 at 16:55

beardcbeardc

21.2k1919 gold badges8080 silver badges9797 bronze badges

Groupby A:

In [0]: grp = df.groupby('A')

Within each group, sum over B and broadcast the values using transform. Then sort by B:

In [1]: grp[['B']].transform(sum).sort('B')
Out[1]:
          B
2 -2.829710
5 -2.829710
1  0.253651
4  0.253651
0  0.551377
3  0.551377

Index the original df by passing the index from above. This will re-order the A values by the aggregate sum of the B values:

In [2]: sort1 = df.ix[grp[['B']].transform(sum).sort('B').index]

In [3]: sort1
Out[3]:
     A         B      C
2  baz -0.528172  False
5  baz -2.301539   True
1  bar -0.611756   True
4  bar  0.865408  False
0  foo  1.624345  False
3  foo -1.072969   True

Finally, sort the 'C' values within groups of 'A' using the sort=False option to preserve the A sort order from step 1:

In [4]: f = lambda x: x.sort('C', ascending=False)

In [5]: sort2 = sort1.groupby('A', sort=False).apply(f)

In [6]: sort2
Out[6]:
         A         B      C
A
baz 5  baz -2.301539   True
    2  baz -0.528172  False
bar 1  bar -0.611756   True
    4  bar  0.865408  False
foo 3  foo -1.072969   True
    0  foo  1.624345  False

Clean up the df index by using reset_index with drop=True:

In [7]: sort2.reset_index(0, drop=True)
Out[7]:
     A         B      C
5  baz -2.301539   True
2  baz -0.528172  False
1  bar -0.611756   True
4  bar  0.865408  False
3  foo -1.072969   True
0  foo  1.624345  False

answered Feb 18, 2013 at 22:11

Zelazny7Zelazny7

40.7k1818 gold badges7171 silver badges8585 bronze badges

4

Here's a more concise approach...

df['a_bsum'] = df.groupby('A')['B'].transform(sum)
df.sort(['a_bsum','C'], ascending=[True, False]).drop('a_bsum', axis=1)

The first line adds a column to the data frame with the groupwise sum. The second line performs the sort and then removes the extra column.

Result:

    A       B           C
5   baz     -2.301539   True
2   baz     -0.528172   False
1   bar     -0.611756   True
4   bar      0.865408   False
3   foo     -1.072969   True
0   foo      1.624345   False

NOTE: sort is deprecated, use sort_values instead

aorcsik

15.6k55 gold badges4242 silver badges5050 bronze badges

answered May 14, 2013 at 14:03

Mark ByersMark Byers

842k202202 gold badges1.6k1.6k silver badges1.5k1.5k bronze badges

2

One way to do this is to insert a dummy column with the sums in order to sort:

In [10]: sum_B_over_A = df.groupby('A').sum().B

In [11]: sum_B_over_A
Out[11]: 
A
bar    0.253652
baz   -2.829711
foo    0.551376
Name: B

in [12]: df['sum_B_over_A'] = df.A.apply(sum_B_over_A.get_value)

In [13]: df
Out[13]: 
     A         B      C  sum_B_over_A
0  foo  1.624345  False      0.551376
1  bar -0.611756   True      0.253652
2  baz -0.528172  False     -2.829711
3  foo -1.072969   True      0.551376
4  bar  0.865408  False      0.253652
5  baz -2.301539   True     -2.829711

In [14]: df.sort(['sum_B_over_A', 'A', 'B'])
Out[14]: 
     A         B      C   sum_B_over_A
5  baz -2.301539   True      -2.829711
2  baz -0.528172  False      -2.829711
1  bar -0.611756   True       0.253652
4  bar  0.865408  False       0.253652
3  foo -1.072969   True       0.551376
0  foo  1.624345  False       0.551376

and maybe you would drop the dummy row:

In [15]: df.sort(['sum_B_over_A', 'A', 'B']).drop('sum_B_over_A', axis=1)
Out[15]: 
     A         B      C
5  baz -2.301539   True
2  baz -0.528172  False
1  bar -0.611756   True
4  bar  0.865408  False
3  foo -1.072969   True
0  foo  1.624345  False

answered Feb 18, 2013 at 18:06

Andy HaydenAndy Hayden

377k110110 gold badges639639 silver badges543543 bronze badges

5

The question is difficult to understand. However, group by A and sum by B then sort values descending. The column A sort order depends on B. You can then use filtering to create a new dataframe filter by A values order the dataframe.

rand = np.random.RandomState(1)
df = pd.DataFrame({'A': ['foo', 'bar', 'baz'] * 2,
                        'B': rand.randn(6),
                        'C': rand.rand(6) > .5})
grouped=df.groupby('A')['B'].sum().sort_values(ascending=False)
print(grouped)
print(grouped.index.get_level_values(0))

Output:

A
foo    0.551377
bar    0.253651
baz   -2.829710

answered Jul 12, 2021 at 14:58

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4