A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://sphinx-gallery.github.io/stable/auto_examples/plot_2_seaborn.html below:

Seaborn example — Sphinx-Gallery 0.19.0-git documentation

Note

Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder

Seaborn example#

This example demonstrates a Seaborn plot. Figures produced Matplotlib and by any package that is based on Matplotlib (e.g., Seaborn), will be captured by default. See Image scrapers for details.

# Author: Michael Waskom & Lucy Liu
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

# Enforce the use of default set style

# Create a noisy periodic dataset
y_array = np.array([])
x_array = np.array([])
rs = np.random.RandomState(8)
for _ in range(15):
    x = np.linspace(0, 30 / 2, 30)
    y = np.sin(x) + rs.normal(0, 1.5) + rs.normal(0, 0.3, 30)
    y_array = np.append(y_array, y)
    x_array = np.append(x_array, x)

# Plot the average over replicates with confidence interval
sns.lineplot(y=y_array, x=x_array)
# to avoid text output
plt.show()

Total running time of the script: (0 minutes 1.981 seconds)

Estimated memory usage: 259 MB

Download Jupyter notebook: plot_2_seaborn.ipynb

Download Python source code: plot_2_seaborn.py

Download zipped: plot_2_seaborn.zip

Gallery generated by Sphinx-Gallery


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4