Showing content from https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/regression/GBTRegressor.html below:
Spark 4.0.0 ScalaDoc - org.apache.spark.ml.regression.GBTRegressor
class GBTRegressor extends Regressor[Vector, GBTRegressor, GBTRegressionModel] with GBTRegressorParams with DefaultParamsWritable with Logging
î·î
Ordering
- Grouped
- Alphabetic
- By Inheritance
Inherited
- GBTRegressor
- DefaultParamsWritable
- MLWritable
- GBTRegressorParams
- TreeRegressorParams
- HasVarianceImpurity
- TreeEnsembleRegressorParams
- GBTParams
- HasValidationIndicatorCol
- HasStepSize
- HasMaxIter
- TreeEnsembleParams
- DecisionTreeParams
- HasWeightCol
- HasSeed
- HasCheckpointInterval
- Regressor
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
Visibility
- Public
- Protected
Instance Constructors
- î
new GBTRegressor()
- î
new GBTRegressor(uid: String)
Type Members
- î
implicit class LogStringContext extends AnyRef
Value Members
- î
final def !=(arg0: Any): Boolean
- î
final def ##: Int
- î
final def $[T](param: Param[T]): T
- î
final def ==(arg0: Any): Boolean
- î
final def asInstanceOf[T0]: T0
- î
final val cacheNodeIds: BooleanParam
- î
final val checkpointInterval: IntParam
- î
final def clear(param: Param[_]): GBTRegressor.this.type
- î
def clone(): AnyRef
- î
def copy(extra: ParamMap): GBTRegressor
- î
def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
- î
final def defaultCopy[T <: Params](extra: ParamMap): T
- î
final def eq(arg0: AnyRef): Boolean
- î
def equals(arg0: AnyRef): Boolean
- î
def explainParam(param: Param[_]): String
- î
def explainParams(): String
- î
final def extractParamMap(): ParamMap
- î
final def extractParamMap(extra: ParamMap): ParamMap
- î
final val featureSubsetStrategy: Param[String]
- î
final val featuresCol: Param[String]
- î
def fit(dataset: Dataset[_]): GBTRegressionModel
- î
def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[GBTRegressionModel]
- î
def fit(dataset: Dataset[_], paramMap: ParamMap): GBTRegressionModel
- î
def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GBTRegressionModel
- î
final def get[T](param: Param[T]): Option[T]
- î
final def getCacheNodeIds: Boolean
- î
final def getCheckpointInterval: Int
- î
final def getClass(): Class[_ <: AnyRef]
- î
final def getDefault[T](param: Param[T]): Option[T]
- î
final def getFeatureSubsetStrategy: String
- î
final def getFeaturesCol: String
- î
final def getImpurity: String
- î
final def getLabelCol: String
- î
final def getLeafCol: String
- î
def getLossType: String
- î
final def getMaxBins: Int
- î
final def getMaxDepth: Int
- î
final def getMaxIter: Int
- î
final def getMaxMemoryInMB: Int
- î
final def getMinInfoGain: Double
- î
final def getMinInstancesPerNode: Int
- î
final def getMinWeightFractionPerNode: Double
- î
final def getOrDefault[T](param: Param[T]): T
- î
def getParam(paramName: String): Param[Any]
- î
final def getPredictionCol: String
- î
final def getSeed: Long
- î
final def getStepSize: Double
- î
final def getSubsamplingRate: Double
- î
final def getValidationIndicatorCol: String
- î
final def getValidationTol: Double
- î
final def getWeightCol: String
- î
final def hasDefault[T](param: Param[T]): Boolean
- î
def hasParam(paramName: String): Boolean
- î
def hashCode(): Int
- î
final val impurity: Param[String]
- î
def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- î
def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- î
final def isDefined(param: Param[_]): Boolean
- î
final def isInstanceOf[T0]: Boolean
- î
final def isSet(param: Param[_]): Boolean
- î
def isTraceEnabled(): Boolean
- î
final val labelCol: Param[String]
- î
final val leafCol: Param[String]
- î
def log: Logger
- î
def logDebug(msg: => String, throwable: Throwable): Unit
- î
def logDebug(entry: LogEntry, throwable: Throwable): Unit
- î
def logDebug(entry: LogEntry): Unit
- î
def logDebug(msg: => String): Unit
- î
def logError(msg: => String, throwable: Throwable): Unit
- î
def logError(entry: LogEntry, throwable: Throwable): Unit
- î
def logError(entry: LogEntry): Unit
- î
def logError(msg: => String): Unit
- î
def logInfo(msg: => String, throwable: Throwable): Unit
- î
def logInfo(entry: LogEntry, throwable: Throwable): Unit
- î
def logInfo(entry: LogEntry): Unit
- î
def logInfo(msg: => String): Unit
- î
def logName: String
- î
def logTrace(msg: => String, throwable: Throwable): Unit
- î
def logTrace(entry: LogEntry, throwable: Throwable): Unit
- î
def logTrace(entry: LogEntry): Unit
- î
def logTrace(msg: => String): Unit
- î
def logWarning(msg: => String, throwable: Throwable): Unit
- î
def logWarning(entry: LogEntry, throwable: Throwable): Unit
- î
def logWarning(entry: LogEntry): Unit
- î
def logWarning(msg: => String): Unit
- î
val lossType: Param[String]
- î
final val maxBins: IntParam
- î
final val maxDepth: IntParam
- î
final val maxIter: IntParam
- î
final val maxMemoryInMB: IntParam
- î
final val minInfoGain: DoubleParam
- î
final val minInstancesPerNode: IntParam
- î
final val minWeightFractionPerNode: DoubleParam
- î
final def ne(arg0: AnyRef): Boolean
- î
final def notify(): Unit
- î
final def notifyAll(): Unit
- î
lazy val params: Array[Param[_]]
- î
final val predictionCol: Param[String]
- î
def save(path: String): Unit
- î
final val seed: LongParam
- î
final def set(paramPair: ParamPair[_]): GBTRegressor.this.type
- î
final def set(param: String, value: Any): GBTRegressor.this.type
- î
final def set[T](param: Param[T], value: T): GBTRegressor.this.type
- î
def setCacheNodeIds(value: Boolean): GBTRegressor.this.type
- î
def setCheckpointInterval(value: Int): GBTRegressor.this.type
- î
final def setDefault(paramPairs: ParamPair[_]*): GBTRegressor.this.type
- î
final def setDefault[T](param: Param[T], value: T): GBTRegressor.this.type
- î
def setFeatureSubsetStrategy(value: String): GBTRegressor.this.type
- î
def setFeaturesCol(value: String): GBTRegressor
- î
def setImpurity(value: String): GBTRegressor.this.type
- î
def setLabelCol(value: String): GBTRegressor
- î
final def setLeafCol(value: String): GBTRegressor.this.type
- î
def setLossType(value: String): GBTRegressor.this.type
- î
def setMaxBins(value: Int): GBTRegressor.this.type
- î
def setMaxDepth(value: Int): GBTRegressor.this.type
- î
def setMaxIter(value: Int): GBTRegressor.this.type
- î
def setMaxMemoryInMB(value: Int): GBTRegressor.this.type
- î
def setMinInfoGain(value: Double): GBTRegressor.this.type
- î
def setMinInstancesPerNode(value: Int): GBTRegressor.this.type
- î
def setMinWeightFractionPerNode(value: Double): GBTRegressor.this.type
- î
def setPredictionCol(value: String): GBTRegressor
- î
def setSeed(value: Long): GBTRegressor.this.type
- î
def setStepSize(value: Double): GBTRegressor.this.type
- î
def setSubsamplingRate(value: Double): GBTRegressor.this.type
- î
def setValidationIndicatorCol(value: String): GBTRegressor.this.type
- î
def setWeightCol(value: String): GBTRegressor.this.type
- î
final val stepSize: DoubleParam
- î
final val subsamplingRate: DoubleParam
- î
final def synchronized[T0](arg0: => T0): T0
- î
def toString(): String
- î
def train(dataset: Dataset[_]): GBTRegressionModel
- î
def transformSchema(schema: StructType): StructType
- î
def transformSchema(schema: StructType, logging: Boolean): StructType
- î
val uid: String
- î
def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- î
final val validationIndicatorCol: Param[String]
- î
final val validationTol: DoubleParam
- î
final def wait(arg0: Long, arg1: Int): Unit
- î
final def wait(arg0: Long): Unit
- î
final def wait(): Unit
- î
final val weightCol: Param[String]
- î
def withLogContext(context: Map[String, String])(body: => Unit): Unit
- î
def write: MLWriter
Deprecated Value Members
- î
def finalize(): Unit
Inherited from GBTRegressorParams
Inherited from TreeRegressorParams
Inherited from HasVarianceImpurity
Inherited from TreeEnsembleRegressorParams
Inherited from GBTParams
Inherited from TreeEnsembleParams
Inherited from DecisionTreeParams
Inherited from PredictorParams
Inherited from Logging
Inherited from AnyRef
Inherited from Any
Members
Parameter setters
Parameter getters
(expert-only) Parameter setters
(expert-only) Parameter getters
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4