Showing content from https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/classification/NaiveBayes.html below:
Spark 4.0.0 ScalaDoc - org.apache.spark.ml.classification.NaiveBayes
class NaiveBayes extends ProbabilisticClassifier[Vector, NaiveBayes, NaiveBayesModel] with NaiveBayesParams with DefaultParamsWritable
î·î
Ordering
- Grouped
- Alphabetic
- By Inheritance
Inherited
- NaiveBayes
- DefaultParamsWritable
- MLWritable
- NaiveBayesParams
- HasWeightCol
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
Visibility
- Public
- Protected
Instance Constructors
- î
new NaiveBayes()
- î
new NaiveBayes(uid: String)
Type Members
- î
implicit class LogStringContext extends AnyRef
Value Members
- î
final def !=(arg0: Any): Boolean
- î
final def ##: Int
- î
final def $[T](param: Param[T]): T
- î
final def ==(arg0: Any): Boolean
- î
final def asInstanceOf[T0]: T0
- î
final def clear(param: Param[_]): NaiveBayes.this.type
- î
def clone(): AnyRef
- î
def copy(extra: ParamMap): NaiveBayes
- î
def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
- î
final def defaultCopy[T <: Params](extra: ParamMap): T
- î
final def eq(arg0: AnyRef): Boolean
- î
def equals(arg0: AnyRef): Boolean
- î
def explainParam(param: Param[_]): String
- î
def explainParams(): String
- î
final def extractParamMap(): ParamMap
- î
final def extractParamMap(extra: ParamMap): ParamMap
- î
final val featuresCol: Param[String]
- î
def fit(dataset: Dataset[_]): NaiveBayesModel
- î
def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[NaiveBayesModel]
- î
def fit(dataset: Dataset[_], paramMap: ParamMap): NaiveBayesModel
- î
def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): NaiveBayesModel
- î
final def get[T](param: Param[T]): Option[T]
- î
final def getClass(): Class[_ <: AnyRef]
- î
final def getDefault[T](param: Param[T]): Option[T]
- î
final def getFeaturesCol: String
- î
final def getLabelCol: String
- î
final def getModelType: String
- î
def getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int
- î
final def getOrDefault[T](param: Param[T]): T
- î
def getParam(paramName: String): Param[Any]
- î
final def getPredictionCol: String
- î
final def getProbabilityCol: String
- î
final def getRawPredictionCol: String
- î
final def getSmoothing: Double
- î
def getThresholds: Array[Double]
- î
final def getWeightCol: String
- î
final def hasDefault[T](param: Param[T]): Boolean
- î
def hasParam(paramName: String): Boolean
- î
def hashCode(): Int
- î
def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- î
def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- î
final def isDefined(param: Param[_]): Boolean
- î
final def isInstanceOf[T0]: Boolean
- î
final def isSet(param: Param[_]): Boolean
- î
def isTraceEnabled(): Boolean
- î
final val labelCol: Param[String]
- î
def log: Logger
- î
def logDebug(msg: => String, throwable: Throwable): Unit
- î
def logDebug(entry: LogEntry, throwable: Throwable): Unit
- î
def logDebug(entry: LogEntry): Unit
- î
def logDebug(msg: => String): Unit
- î
def logError(msg: => String, throwable: Throwable): Unit
- î
def logError(entry: LogEntry, throwable: Throwable): Unit
- î
def logError(entry: LogEntry): Unit
- î
def logError(msg: => String): Unit
- î
def logInfo(msg: => String, throwable: Throwable): Unit
- î
def logInfo(entry: LogEntry, throwable: Throwable): Unit
- î
def logInfo(entry: LogEntry): Unit
- î
def logInfo(msg: => String): Unit
- î
def logName: String
- î
def logTrace(msg: => String, throwable: Throwable): Unit
- î
def logTrace(entry: LogEntry, throwable: Throwable): Unit
- î
def logTrace(entry: LogEntry): Unit
- î
def logTrace(msg: => String): Unit
- î
def logWarning(msg: => String, throwable: Throwable): Unit
- î
def logWarning(entry: LogEntry, throwable: Throwable): Unit
- î
def logWarning(entry: LogEntry): Unit
- î
def logWarning(msg: => String): Unit
- î
final val modelType: Param[String]
- î
final def ne(arg0: AnyRef): Boolean
- î
final def notify(): Unit
- î
final def notifyAll(): Unit
- î
lazy val params: Array[Param[_]]
- î
final val predictionCol: Param[String]
- î
final val probabilityCol: Param[String]
- î
final val rawPredictionCol: Param[String]
- î
def save(path: String): Unit
- î
final def set(paramPair: ParamPair[_]): NaiveBayes.this.type
- î
final def set(param: String, value: Any): NaiveBayes.this.type
- î
final def set[T](param: Param[T], value: T): NaiveBayes.this.type
- î
final def setDefault(paramPairs: ParamPair[_]*): NaiveBayes.this.type
- î
final def setDefault[T](param: Param[T], value: T): NaiveBayes.this.type
- î
def setFeaturesCol(value: String): NaiveBayes
- î
def setLabelCol(value: String): NaiveBayes
- î
def setModelType(value: String): NaiveBayes.this.type
- î
def setPredictionCol(value: String): NaiveBayes
- î
def setProbabilityCol(value: String): NaiveBayes
- î
def setRawPredictionCol(value: String): NaiveBayes
- î
def setSmoothing(value: Double): NaiveBayes.this.type
- î
def setThresholds(value: Array[Double]): NaiveBayes
- î
def setWeightCol(value: String): NaiveBayes.this.type
- î
final val smoothing: DoubleParam
- î
final def synchronized[T0](arg0: => T0): T0
- î
val thresholds: DoubleArrayParam
- î
def toString(): String
- î
def train(dataset: Dataset[_]): NaiveBayesModel
- î
def transformSchema(schema: StructType): StructType
- î
def transformSchema(schema: StructType, logging: Boolean): StructType
- î
val uid: String
- î
def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- î
final def wait(arg0: Long, arg1: Int): Unit
- î
final def wait(arg0: Long): Unit
- î
final def wait(): Unit
- î
final val weightCol: Param[String]
- î
def withLogContext(context: Map[String, String])(body: => Unit): Unit
- î
def write: MLWriter
Deprecated Value Members
- î
def finalize(): Unit
Inherited from NaiveBayesParams
Inherited from ProbabilisticClassifierParams
Inherited from ClassifierParams
Inherited from PredictorParams
Inherited from Logging
Inherited from AnyRef
Inherited from Any
Members
Parameter setters
Parameter getters
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4