Showing content from https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/classification/FMClassifier.html below:
Spark 4.0.0 ScalaDoc - org.apache.spark.ml.classification.FMClassifier
class FMClassifier extends ProbabilisticClassifier[Vector, FMClassifier, FMClassificationModel] with FactorizationMachines with FMClassifierParams with DefaultParamsWritable with Logging
î·î
Ordering
- Grouped
- Alphabetic
- By Inheritance
Inherited
- FMClassifier
- DefaultParamsWritable
- MLWritable
- FMClassifierParams
- FactorizationMachines
- FactorizationMachinesParams
- HasWeightCol
- HasRegParam
- HasFitIntercept
- HasSeed
- HasSolver
- HasTol
- HasStepSize
- HasMaxIter
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
Visibility
- Public
- Protected
Instance Constructors
- î
new FMClassifier()
- î
new FMClassifier(uid: String)
Type Members
- î
implicit class LogStringContext extends AnyRef
Value Members
- î
final def !=(arg0: Any): Boolean
- î
final def ##: Int
- î
final def $[T](param: Param[T]): T
- î
final def ==(arg0: Any): Boolean
- î
final def asInstanceOf[T0]: T0
- î
final def clear(param: Param[_]): FMClassifier.this.type
- î
def clone(): AnyRef
- î
def copy(extra: ParamMap): FMClassifier
- î
def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
- î
final def defaultCopy[T <: Params](extra: ParamMap): T
- î
final def eq(arg0: AnyRef): Boolean
- î
def equals(arg0: AnyRef): Boolean
- î
def explainParam(param: Param[_]): String
- î
def explainParams(): String
- î
final def extractParamMap(): ParamMap
- î
final def extractParamMap(extra: ParamMap): ParamMap
- î
final val factorSize: IntParam
- î
final val featuresCol: Param[String]
- î
def fit(dataset: Dataset[_]): FMClassificationModel
- î
def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[FMClassificationModel]
- î
def fit(dataset: Dataset[_], paramMap: ParamMap): FMClassificationModel
- î
def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): FMClassificationModel
- î
final val fitIntercept: BooleanParam
- î
final val fitLinear: BooleanParam
- î
final def get[T](param: Param[T]): Option[T]
- î
final def getClass(): Class[_ <: AnyRef]
- î
final def getDefault[T](param: Param[T]): Option[T]
- î
final def getFactorSize: Int
- î
final def getFeaturesCol: String
- î
final def getFitIntercept: Boolean
- î
final def getFitLinear: Boolean
- î
final def getInitStd: Double
- î
final def getLabelCol: String
- î
final def getMaxIter: Int
- î
final def getMiniBatchFraction: Double
- î
def getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int
- î
final def getOrDefault[T](param: Param[T]): T
- î
def getParam(paramName: String): Param[Any]
- î
final def getPredictionCol: String
- î
final def getProbabilityCol: String
- î
final def getRawPredictionCol: String
- î
final def getRegParam: Double
- î
final def getSeed: Long
- î
final def getSolver: String
- î
final def getStepSize: Double
- î
def getThresholds: Array[Double]
- î
final def getTol: Double
- î
final def getWeightCol: String
- î
final def hasDefault[T](param: Param[T]): Boolean
- î
def hasParam(paramName: String): Boolean
- î
def hashCode(): Int
- î
final val initStd: DoubleParam
- î
def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- î
def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- î
final def isDefined(param: Param[_]): Boolean
- î
final def isInstanceOf[T0]: Boolean
- î
final def isSet(param: Param[_]): Boolean
- î
def isTraceEnabled(): Boolean
- î
final val labelCol: Param[String]
- î
def log: Logger
- î
def logDebug(msg: => String, throwable: Throwable): Unit
- î
def logDebug(entry: LogEntry, throwable: Throwable): Unit
- î
def logDebug(entry: LogEntry): Unit
- î
def logDebug(msg: => String): Unit
- î
def logError(msg: => String, throwable: Throwable): Unit
- î
def logError(entry: LogEntry, throwable: Throwable): Unit
- î
def logError(entry: LogEntry): Unit
- î
def logError(msg: => String): Unit
- î
def logInfo(msg: => String, throwable: Throwable): Unit
- î
def logInfo(entry: LogEntry, throwable: Throwable): Unit
- î
def logInfo(entry: LogEntry): Unit
- î
def logInfo(msg: => String): Unit
- î
def logName: String
- î
def logTrace(msg: => String, throwable: Throwable): Unit
- î
def logTrace(entry: LogEntry, throwable: Throwable): Unit
- î
def logTrace(entry: LogEntry): Unit
- î
def logTrace(msg: => String): Unit
- î
def logWarning(msg: => String, throwable: Throwable): Unit
- î
def logWarning(entry: LogEntry, throwable: Throwable): Unit
- î
def logWarning(entry: LogEntry): Unit
- î
def logWarning(msg: => String): Unit
- î
final val maxIter: IntParam
- î
final val miniBatchFraction: DoubleParam
- î
final def ne(arg0: AnyRef): Boolean
- î
final def notify(): Unit
- î
final def notifyAll(): Unit
- î
lazy val params: Array[Param[_]]
- î
final val predictionCol: Param[String]
- î
final val probabilityCol: Param[String]
- î
final val rawPredictionCol: Param[String]
- î
final val regParam: DoubleParam
- î
def save(path: String): Unit
- î
final val seed: LongParam
- î
final def set(paramPair: ParamPair[_]): FMClassifier.this.type
- î
final def set(param: String, value: Any): FMClassifier.this.type
- î
final def set[T](param: Param[T], value: T): FMClassifier.this.type
- î
final def setDefault(paramPairs: ParamPair[_]*): FMClassifier.this.type
- î
final def setDefault[T](param: Param[T], value: T): FMClassifier.this.type
- î
def setFactorSize(value: Int): FMClassifier.this.type
- î
def setFeaturesCol(value: String): FMClassifier
- î
def setFitIntercept(value: Boolean): FMClassifier.this.type
- î
def setFitLinear(value: Boolean): FMClassifier.this.type
- î
def setInitStd(value: Double): FMClassifier.this.type
- î
def setLabelCol(value: String): FMClassifier
- î
def setMaxIter(value: Int): FMClassifier.this.type
- î
def setMiniBatchFraction(value: Double): FMClassifier.this.type
- î
def setPredictionCol(value: String): FMClassifier
- î
def setProbabilityCol(value: String): FMClassifier
- î
def setRawPredictionCol(value: String): FMClassifier
- î
def setRegParam(value: Double): FMClassifier.this.type
- î
def setSeed(value: Long): FMClassifier.this.type
- î
def setSolver(value: String): FMClassifier.this.type
- î
def setStepSize(value: Double): FMClassifier.this.type
- î
def setThresholds(value: Array[Double]): FMClassifier
- î
def setTol(value: Double): FMClassifier.this.type
- î
final val solver: Param[String]
- î
val stepSize: DoubleParam
- î
final def synchronized[T0](arg0: => T0): T0
- î
val thresholds: DoubleArrayParam
- î
def toString(): String
- î
final val tol: DoubleParam
- î
def train(dataset: Dataset[_]): FMClassificationModel
- î
def transformSchema(schema: StructType): StructType
- î
def transformSchema(schema: StructType, logging: Boolean): StructType
- î
val uid: String
- î
def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- î
final def wait(arg0: Long, arg1: Int): Unit
- î
final def wait(arg0: Long): Unit
- î
final def wait(): Unit
- î
final val weightCol: Param[String]
- î
def withLogContext(context: Map[String, String])(body: => Unit): Unit
- î
def write: MLWriter
Deprecated Value Members
- î
def finalize(): Unit
Inherited from FMClassifierParams
Inherited from FactorizationMachines
Inherited from FactorizationMachinesParams
Inherited from ProbabilisticClassifierParams
Inherited from ClassifierParams
Inherited from PredictorParams
Inherited from Logging
Inherited from AnyRef
Inherited from Any
Members
Parameter setters
Parameter getters
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4