A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://spark.apache.org/docs/latest/api/R/reference/write.df.html below:

Save the contents of SparkDataFrame to a data source. — write.df • SparkR

The data source is specified by the source and a set of options (...). If source is not specified, the default data source configured by spark.sql.sources.default will be used.

Usage
write.df(df, path = NULL, ...)

saveDF(df, path, source = NULL, mode = "error", ...)

write.df(df, path = NULL, ...)

# S4 method for class 'SparkDataFrame'
write.df(
  df,
  path = NULL,
  source = NULL,
  mode = "error",
  partitionBy = NULL,
  ...
)

# S4 method for class 'SparkDataFrame,character'
saveDF(df, path, source = NULL, mode = "error", ...)
Arguments
df

a SparkDataFrame.

path

a name for the table.

...

additional argument(s) passed to the method.

source

a name for external data source.

mode

one of 'append', 'overwrite', 'error', 'errorifexists', 'ignore' save mode (it is 'error' by default)

partitionBy

a name or a list of names of columns to partition the output by on the file system. If specified, the output is laid out on the file system similar to Hive's partitioning scheme.

Details

Additionally, mode is used to specify the behavior of the save operation when data already exists in the data source. There are four modes:

Note

write.df since 1.4.0

saveDF since 1.4.0

See also

Other SparkDataFrame functions: SparkDataFrame-class, agg(), alias(), arrange(), as.data.frame(), attach,SparkDataFrame-method, broadcast(), cache(), checkpoint(), coalesce(), collect(), colnames(), coltypes(), createOrReplaceTempView(), crossJoin(), cube(), dapplyCollect(), dapply(), describe(), dim(), distinct(), dropDuplicates(), dropna(), drop(), dtypes(), exceptAll(), except(), explain(), filter(), first(), gapplyCollect(), gapply(), getNumPartitions(), group_by(), head(), hint(), histogram(), insertInto(), intersectAll(), intersect(), isLocal(), isStreaming(), join(), limit(), localCheckpoint(), merge(), mutate(), ncol(), nrow(), persist(), printSchema(), randomSplit(), rbind(), rename(), repartitionByRange(), repartition(), rollup(), sample(), saveAsTable(), schema(), selectExpr(), select(), showDF(), show(), storageLevel(), str(), subset(), summary(), take(), toJSON(), unionAll(), unionByName(), union(), unpersist(), unpivot(), withColumn(), withWatermark(), with(), write.jdbc(), write.json(), write.orc(), write.parquet(), write.stream(), write.text()

Examples
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
write.df(df, "myfile", "parquet", "overwrite", partitionBy = c("col1", "col2"))
saveDF(df, parquetPath2, "parquet", mode = "append", mergeSchema = TRUE)
} # }

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4