Return a new SparkDataFrame by adding a column or replacing the existing column that has the same name.
UsagewithColumn(x, colName, col)
# S4 method for class 'SparkDataFrame,character'
withColumn(x, colName, col)
Arguments
a SparkDataFrame.
a column name.
a Column expression (which must refer only to this SparkDataFrame), or an atomic vector in the length of 1 as literal value.
A SparkDataFrame with the new column added or the existing column replaced.
DetailsNote: This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even StackOverflowException
. To avoid this, use select
with the multiple columns at once.
withColumn since 1.4.0
See alsoOther SparkDataFrame functions: SparkDataFrame-class
, agg()
, alias()
, arrange()
, as.data.frame()
, attach,SparkDataFrame-method
, broadcast()
, cache()
, checkpoint()
, coalesce()
, collect()
, colnames()
, coltypes()
, createOrReplaceTempView()
, crossJoin()
, cube()
, dapplyCollect()
, dapply()
, describe()
, dim()
, distinct()
, dropDuplicates()
, dropna()
, drop()
, dtypes()
, exceptAll()
, except()
, explain()
, filter()
, first()
, gapplyCollect()
, gapply()
, getNumPartitions()
, group_by()
, head()
, hint()
, histogram()
, insertInto()
, intersectAll()
, intersect()
, isLocal()
, isStreaming()
, join()
, limit()
, localCheckpoint()
, merge()
, mutate()
, ncol()
, nrow()
, persist()
, printSchema()
, randomSplit()
, rbind()
, rename()
, repartitionByRange()
, repartition()
, rollup()
, sample()
, saveAsTable()
, schema()
, selectExpr()
, select()
, showDF()
, show()
, storageLevel()
, str()
, subset()
, summary()
, take()
, toJSON()
, unionAll()
, unionByName()
, union()
, unpersist()
, unpivot()
, withWatermark()
, with()
, write.df()
, write.jdbc()
, write.json()
, write.orc()
, write.parquet()
, write.stream()
, write.text()
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
newDF <- withColumn(df, "newCol", df$col1 * 5)
# Replace an existing column
newDF2 <- withColumn(newDF, "newCol", newDF$col1)
newDF3 <- withColumn(newDF, "newCol", 42)
# Use extract operator to set an existing or new column
df[["age"]] <- 23
df[[2]] <- df$col1
df[[2]] <- NULL # drop column
} # }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4