A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://spark.apache.org/docs/latest/api/R/reference/summary.html below:

summary — summary • SparkR

Computes specified statistics for numeric and string columns. Available statistics are:

If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting Dataset. If you want to programmatically compute summary statistics, use the agg function instead.

Usage
summary(object, ...)

# S4 method for class 'SparkDataFrame'
summary(object, ...)
Arguments
object

a SparkDataFrame to be summarized.

...

(optional) statistics to be computed for all columns.

Note

summary(SparkDataFrame) since 1.5.0

The statistics provided by summary were change in 2.3.0 use describe for previous defaults.

See also

describe

Other SparkDataFrame functions: SparkDataFrame-class, agg(), alias(), arrange(), as.data.frame(), attach,SparkDataFrame-method, broadcast(), cache(), checkpoint(), coalesce(), collect(), colnames(), coltypes(), createOrReplaceTempView(), crossJoin(), cube(), dapplyCollect(), dapply(), describe(), dim(), distinct(), dropDuplicates(), dropna(), drop(), dtypes(), exceptAll(), except(), explain(), filter(), first(), gapplyCollect(), gapply(), getNumPartitions(), group_by(), head(), hint(), histogram(), insertInto(), intersectAll(), intersect(), isLocal(), isStreaming(), join(), limit(), localCheckpoint(), merge(), mutate(), ncol(), nrow(), persist(), printSchema(), randomSplit(), rbind(), rename(), repartitionByRange(), repartition(), rollup(), sample(), saveAsTable(), schema(), selectExpr(), select(), showDF(), show(), storageLevel(), str(), subset(), take(), toJSON(), unionAll(), unionByName(), union(), unpersist(), unpivot(), withColumn(), withWatermark(), with(), write.df(), write.jdbc(), write.json(), write.orc(), write.parquet(), write.stream(), write.text()

Examples
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
summary(df)
summary(df, "min", "25%", "75%", "max")
summary(select(df, "age", "height"))
} # }

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4