The following options for repartition are possible:
1. Return a new SparkDataFrame that has exactly numPartitions
.
2. Return a new SparkDataFrame hash partitioned by the given columns into numPartitions
.
3. Return a new SparkDataFrame hash partitioned by the given column(s), using spark.sql.shuffle.partitions
as number of partitions.
repartition(x, ...)
# S4 method for class 'SparkDataFrame'
repartition(x, numPartitions = NULL, col = NULL, ...)
Arguments
a SparkDataFrame.
additional column(s) to be used in the partitioning.
the number of partitions to use.
the column by which the partitioning will be performed.
repartition since 1.4.0
See alsoOther SparkDataFrame functions: SparkDataFrame-class
, agg()
, alias()
, arrange()
, as.data.frame()
, attach,SparkDataFrame-method
, broadcast()
, cache()
, checkpoint()
, coalesce()
, collect()
, colnames()
, coltypes()
, createOrReplaceTempView()
, crossJoin()
, cube()
, dapplyCollect()
, dapply()
, describe()
, dim()
, distinct()
, dropDuplicates()
, dropna()
, drop()
, dtypes()
, exceptAll()
, except()
, explain()
, filter()
, first()
, gapplyCollect()
, gapply()
, getNumPartitions()
, group_by()
, head()
, hint()
, histogram()
, insertInto()
, intersectAll()
, intersect()
, isLocal()
, isStreaming()
, join()
, limit()
, localCheckpoint()
, merge()
, mutate()
, ncol()
, nrow()
, persist()
, printSchema()
, randomSplit()
, rbind()
, rename()
, repartitionByRange()
, rollup()
, sample()
, saveAsTable()
, schema()
, selectExpr()
, select()
, showDF()
, show()
, storageLevel()
, str()
, subset()
, summary()
, take()
, toJSON()
, unionAll()
, unionByName()
, union()
, unpersist()
, unpivot()
, withColumn()
, withWatermark()
, with()
, write.df()
, write.jdbc()
, write.json()
, write.orc()
, write.parquet()
, write.stream()
, write.text()
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
newDF <- repartition(df, 2L)
newDF <- repartition(df, numPartitions = 2L)
newDF <- repartition(df, col = df$"col1", df$"col2")
newDF <- repartition(df, 3L, col = df$"col1", df$"col2")
} # }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4