dropna, na.omit - Returns a new SparkDataFrame omitting rows with null values.
Usagedropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
na.omit(object, ...)
fillna(x, value, cols = NULL)
# S4 method for class 'SparkDataFrame'
dropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
# S4 method for class 'SparkDataFrame'
na.omit(object, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
# S4 method for class 'SparkDataFrame'
fillna(x, value, cols = NULL)
Arguments
a SparkDataFrame.
"any" or "all". if "any", drop a row if it contains any nulls. if "all", drop a row only if all its values are null. if minNonNulls
is specified, how is ignored.
if specified, drop rows that have less than minNonNulls
non-null values. This overwrites the how parameter.
optional list of column names to consider. In fillna
, columns specified in cols that do not have matching data type are ignored. For example, if value is a character, and subset contains a non-character column, then the non-character column is simply ignored.
a SparkDataFrame.
further arguments to be passed to or from other methods.
value to replace null values with. Should be an integer, numeric, character or named list. If the value is a named list, then cols is ignored and value must be a mapping from column name (character) to replacement value. The replacement value must be an integer, numeric or character.
dropna since 1.4.0
na.omit since 1.5.0
fillna since 1.4.0
See alsoOther SparkDataFrame functions: SparkDataFrame-class
, agg()
, alias()
, arrange()
, as.data.frame()
, attach,SparkDataFrame-method
, broadcast()
, cache()
, checkpoint()
, coalesce()
, collect()
, colnames()
, coltypes()
, createOrReplaceTempView()
, crossJoin()
, cube()
, dapplyCollect()
, dapply()
, describe()
, dim()
, distinct()
, dropDuplicates()
, drop()
, dtypes()
, exceptAll()
, except()
, explain()
, filter()
, first()
, gapplyCollect()
, gapply()
, getNumPartitions()
, group_by()
, head()
, hint()
, histogram()
, insertInto()
, intersectAll()
, intersect()
, isLocal()
, isStreaming()
, join()
, limit()
, localCheckpoint()
, merge()
, mutate()
, ncol()
, nrow()
, persist()
, printSchema()
, randomSplit()
, rbind()
, rename()
, repartitionByRange()
, repartition()
, rollup()
, sample()
, saveAsTable()
, schema()
, selectExpr()
, select()
, showDF()
, show()
, storageLevel()
, str()
, subset()
, summary()
, take()
, toJSON()
, unionAll()
, unionByName()
, union()
, unpersist()
, unpivot()
, withColumn()
, withWatermark()
, with()
, write.df()
, write.jdbc()
, write.json()
, write.orc()
, write.parquet()
, write.stream()
, write.text()
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
dropna(df)
} # }
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
fillna(df, 1)
fillna(df, list("age" = 20, "name" = "unknown"))
} # }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4