Merges two data frames
Usagemerge(x, y, ...)
# S4 method for class 'SparkDataFrame,SparkDataFrame'
merge(
x,
y,
by = intersect(names(x), names(y)),
by.x = by,
by.y = by,
all = FALSE,
all.x = all,
all.y = all,
sort = TRUE,
suffixes = c("_x", "_y"),
...
)
Arguments
the first data frame to be joined.
the second data frame to be joined.
additional argument(s) passed to the method.
a character vector specifying the join columns. If by is not specified, the common column names in x
and y
will be used. If by or both by.x and by.y are explicitly set to NULL or of length 0, the Cartesian Product of x and y will be returned.
a character vector specifying the joining columns for x.
a character vector specifying the joining columns for y.
a boolean value setting all.x
and all.y
if any of them are unset.
a boolean value indicating whether all the rows in x should be including in the join.
a boolean value indicating whether all the rows in y should be including in the join.
a logical argument indicating whether the resulting columns should be sorted.
a string vector of length 2 used to make colnames of x
and y
unique. The first element is appended to each colname of x
. The second element is appended to each colname of y
.
If all.x and all.y are set to FALSE, a natural join will be returned. If all.x is set to TRUE and all.y is set to FALSE, a left outer join will be returned. If all.x is set to FALSE and all.y is set to TRUE, a right outer join will be returned. If all.x and all.y are set to TRUE, a full outer join will be returned.
See alsoOther SparkDataFrame functions: SparkDataFrame-class
, agg()
, alias()
, arrange()
, as.data.frame()
, attach,SparkDataFrame-method
, broadcast()
, cache()
, checkpoint()
, coalesce()
, collect()
, colnames()
, coltypes()
, createOrReplaceTempView()
, crossJoin()
, cube()
, dapplyCollect()
, dapply()
, describe()
, dim()
, distinct()
, dropDuplicates()
, dropna()
, drop()
, dtypes()
, exceptAll()
, except()
, explain()
, filter()
, first()
, gapplyCollect()
, gapply()
, getNumPartitions()
, group_by()
, head()
, hint()
, histogram()
, insertInto()
, intersectAll()
, intersect()
, isLocal()
, isStreaming()
, join()
, limit()
, localCheckpoint()
, mutate()
, ncol()
, nrow()
, persist()
, printSchema()
, randomSplit()
, rbind()
, rename()
, repartitionByRange()
, repartition()
, rollup()
, sample()
, saveAsTable()
, schema()
, selectExpr()
, select()
, showDF()
, show()
, storageLevel()
, str()
, subset()
, summary()
, take()
, toJSON()
, unionAll()
, unionByName()
, union()
, unpersist()
, unpivot()
, withColumn()
, withWatermark()
, with()
, write.df()
, write.jdbc()
, write.json()
, write.orc()
, write.parquet()
, write.stream()
, write.text()
if (FALSE) { # \dontrun{
sparkR.session()
df1 <- read.json(path)
df2 <- read.json(path2)
merge(df1, df2) # Performs an inner join by common columns
merge(df1, df2, by = "col1") # Performs an inner join based on expression
merge(df1, df2, by.x = "col1", by.y = "col2", all.y = TRUE)
merge(df1, df2, by.x = "col1", by.y = "col2", all.x = TRUE)
merge(df1, df2, by.x = "col1", by.y = "col2", all.x = TRUE, all.y = TRUE)
merge(df1, df2, by.x = "col1", by.y = "col2", all = TRUE, sort = FALSE)
merge(df1, df2, by = "col1", all = TRUE, suffixes = c("-X", "-Y"))
merge(df1, df2, by = NULL) # Performs a Cartesian join
} # }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4