A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://spark.apache.org/docs/latest/api/R/reference/index.html below:

Package index • SparkR

SparkDataFrame-class
S4 class that represents a SparkDataFrame
groupedData()
S4 class that represents a GroupedData
agg() summarize()
summarize
arrange() orderBy(<SparkDataFrame>,<characterOrColumn>)
Arrange Rows by Variables
approxQuantile(<SparkDataFrame>,<character>,<numeric>,<numeric>)
Calculates the approximate quantiles of numerical columns of a SparkDataFrame
as.data.frame()
Download data from a SparkDataFrame into a R data.frame
attach(<SparkDataFrame>)
Attach SparkDataFrame to R search path
broadcast()
broadcast
cache()
Cache
cacheTable()
Cache Table
checkpoint()
checkpoint
collect()
Collects all the elements of a SparkDataFrame and coerces them into an R data.frame.
coltypes() `coltypes<-`()
coltypes
colnames() `colnames<-`() columns() names(<SparkDataFrame>) `names<-`(<SparkDataFrame>)
Column Names of SparkDataFrame
count() n()
Count
createDataFrame() as.DataFrame()
Create a SparkDataFrame
createExternalTable()
(Deprecated) Create an external table
createOrReplaceTempView()
Creates a temporary view using the given name.
createTable()
Creates a table based on the dataset in a data source
crossJoin(<SparkDataFrame>,<SparkDataFrame>)
CrossJoin
crosstab(<SparkDataFrame>,<character>,<character>)
Computes a pair-wise frequency table of the given columns
cube()
cube
describe()
describe
distinct() unique(<SparkDataFrame>)
Distinct
dim(<SparkDataFrame>)
Returns the dimensions of SparkDataFrame
drop()
drop
dropDuplicates()
dropDuplicates
dropna() na.omit() fillna()
A set of SparkDataFrame functions working with NA values
dtypes()
DataTypes
except()
except
exceptAll()
exceptAll
explain()
Explain
filter() where()
Filter
getNumPartitions(<SparkDataFrame>)
getNumPartitions
group_by() groupBy()
GroupBy
head(<SparkDataFrame>)
Head
hint()
hint
histogram(<SparkDataFrame>,<characterOrColumn>)
Compute histogram statistics for given column
insertInto()
insertInto
intersect()
Intersect
intersectAll()
intersectAll
isLocal()
isLocal
isStreaming()
isStreaming
join(<SparkDataFrame>,<SparkDataFrame>)
Join
limit()
Limit
localCheckpoint()
localCheckpoint
merge()
Merges two data frames
mutate() transform()
Mutate
ncol(<SparkDataFrame>)
Returns the number of columns in a SparkDataFrame
count(<SparkDataFrame>) nrow(<SparkDataFrame>)
Returns the number of rows in a SparkDataFrame
orderBy()
Ordering Columns in a WindowSpec
persist()
Persist
pivot(<GroupedData>,<character>)
Pivot a column of the GroupedData and perform the specified aggregation.
printSchema()
Print Schema of a SparkDataFrame
randomSplit()
randomSplit
rbind()
Union two or more SparkDataFrames
rename() withColumnRenamed()
rename
registerTempTable()
(Deprecated) Register Temporary Table
repartition()
Repartition
repartitionByRange()
Repartition by range
rollup()
rollup
sample() sample_frac()
Sample
sampleBy()
Returns a stratified sample without replacement
saveAsTable()
Save the contents of the SparkDataFrame to a data source as a table
schema()
Get schema object
select() `$`(<SparkDataFrame>) `$<-`(<SparkDataFrame>)
Select
selectExpr()
SelectExpr
show(<Column>) show(<GroupedData>) show(<SparkDataFrame>) show(<WindowSpec>) show(<StreamingQuery>)
show
showDF()
showDF
str(<SparkDataFrame>)
Compactly display the structure of a dataset
storageLevel(<SparkDataFrame>)
StorageLevel
subset() `[[`(<SparkDataFrame>,<numericOrcharacter>) `[[<-`(<SparkDataFrame>,<numericOrcharacter>) `[`(<SparkDataFrame>)
Subset
summary()
summary
take()
Take the first NUM rows of a SparkDataFrame and return the results as a R data.frame
tableToDF()
Create a SparkDataFrame from a SparkSQL table or view
toJSON(<SparkDataFrame>)
toJSON
union()
Return a new SparkDataFrame containing the union of rows
unionAll()
Return a new SparkDataFrame containing the union of rows.
unionByName()
Return a new SparkDataFrame containing the union of rows, matched by column names
unpersist()
Unpersist
unpivot() melt(<SparkDataFrame>,<ANY>,<ANY>,<character>,<character>)
Unpivot a DataFrame from wide format to long format.
with()
Evaluate a R expression in an environment constructed from a SparkDataFrame
withColumn()
WithColumn
read.df() loadDF()
Load a SparkDataFrame
read.jdbc()
Create a SparkDataFrame representing the database table accessible via JDBC URL
read.json()
Create a SparkDataFrame from a JSON file.
read.orc()
Create a SparkDataFrame from an ORC file.
read.parquet()
Create a SparkDataFrame from a Parquet file.
read.text()
Create a SparkDataFrame from a text file.
write.df() saveDF()
Save the contents of SparkDataFrame to a data source.
write.jdbc()
Save the content of SparkDataFrame to an external database table via JDBC.
write.json()
Save the contents of SparkDataFrame as a JSON file
write.orc()
Save the contents of SparkDataFrame as an ORC file, preserving the schema.
write.parquet()
Save the contents of SparkDataFrame as a Parquet file, preserving the schema.
write.text()
Save the content of SparkDataFrame in a text file at the specified path.
approx_count_distinct() approxCountDistinct() collect_list() collect_set() count_distinct() countDistinct() grouping_bit() grouping_id() kurtosis() max_by() min_by() n_distinct() percentile_approx() product() sd() skewness() stddev() std() stddev_pop() stddev_samp() sum_distinct() sumDistinct() var() variance() var_pop() var_samp() max(<Column>) mean(<Column>) min(<Column>) sum(<Column>)
Aggregate functions for Column operations
from_avro() to_avro()
Avro processing functions for Column operations
column_collection_functions reverse,Column-method reverse to_json,Column-method to_json to_csv,Column-method to_csv concat,Column-method concat from_json,Column,characterOrstructTypeOrColumn-method from_json schema_of_json,characterOrColumn-method schema_of_json from_csv,Column,characterOrstructTypeOrColumn-method from_csv schema_of_csv,characterOrColumn-method schema_of_csv array_aggregate,characterOrColumn,Column,function-method array_aggregate array_contains,Column-method array_contains array_distinct,Column-method array_distinct array_except,Column,Column-method array_except array_except,Column-method array_exists,characterOrColumn,function-method array_exists array_filter,characterOrColumn,function-method array_filter array_forall,characterOrColumn,function-method array_forall array_intersect,Column,Column-method array_intersect array_intersect,Column-method array_join,Column,character-method array_join array_join,Column-method array_max,Column-method array_max array_min,Column-method array_min array_position,Column-method array_position array_remove,Column-method array_remove array_repeat,Column,numericOrColumn-method array_repeat array_sort,Column-method array_sort array_transform,characterOrColumn,function-method array_transform array_transform,characterOrColumn,characterOrColumn,function-method arrays_overlap,Column,Column-method arrays_overlap arrays_overlap,Column-method array_union,Column,Column-method array_union array_union,Column-method arrays_zip,Column-method arrays_zip arrays_zip_with,characterOrColumn,characterOrColumn,function-method arrays_zip_with shuffle,Column-method shuffle flatten,Column-method flatten map_concat,Column-method map_concat map_entries,Column-method map_entries map_filter,characterOrColumn,function-method map_filter map_from_arrays,Column,Column-method map_from_arrays map_from_arrays,Column-method map_from_entries,Column-method map_from_entries map_keys,Column-method map_keys transform_keys,characterOrColumn,function-method transform_keys transform_values,characterOrColumn,function-method transform_values map_values,Column-method map_values map_zip_with,characterOrColumn,characterOrColumn,function-method map_zip_with element_at,Column-method element_at explode,Column-method explode size,Column-method size slice,Column-method slice sort_array,Column-method sort_array posexplode,Column-method posexplode explode_outer,Column-method explode_outer posexplode_outer,Column-method posexplode_outer
Collection functions for Column operations
add_months() datediff() date_add() date_format() date_sub() from_utc_timestamp() months_between() next_day() to_utc_timestamp()
Date time arithmetic functions for Column operations
bin() bround() cbrt() ceil() conv() cot() csc() hex() hypot() ln() pmod() rint() sec() shiftLeft() shiftleft() shiftRight() shiftright() shiftRightUnsigned() shiftrightunsigned() signum() degrees() toDegrees() radians() toRadians() unhex() width_bucket() abs(<Column>) acos(<Column>) acosh(<Column>) asin(<Column>) asinh(<Column>) atan(<Column>) atanh(<Column>) ceiling(<Column>) cos(<Column>) cosh(<Column>) exp(<Column>) expm1(<Column>) factorial(<Column>) floor(<Column>) log(<Column>) log10(<Column>) log1p(<Column>) log2(<Column>) round(<Column>) sign(<Column>) sin(<Column>) sinh(<Column>) sqrt(<Column>) tan(<Column>) tanh(<Column>) atan2(<Column>)
Math functions for Column operations
assert_true() crc32() hash() md5() raise_error() sha1() sha2() xxhash64()
Miscellaneous functions for Column operations
array_to_vector() vector_to_array()
ML functions for Column operations
when() bitwise_not() bitwiseNOT() create_array() create_map() expr() greatest() input_file_name() isnan() least() lit() monotonically_increasing_id() nanvl() negate() negative() positive() rand() randn() spark_partition_id() struct() coalesce(<Column>) is.nan(<Column>) ifelse(<Column>)
Non-aggregate functions for Column operations
ascii() base64() bit_length() collate() collation() concat_ws() decode() encode() format_number() format_string() initcap() instr() levenshtein() locate() lower() lpad() ltrim() octet_length() overlay() regexp_extract() regexp_replace() repeat_string() rpad() rtrim() split_string() soundex() substring_index() translate() trim() unbase64() upper() length(<Column>)
String functions for Column operations
cume_dist() dense_rank() lag() lead() nth_value() ntile() percent_rank() rank() row_number()
Window functions for Column operations
alias(<Column>) alias(<SparkDataFrame>)
alias
asc() asc_nulls_first() asc_nulls_last() contains() desc() desc_nulls_first() desc_nulls_last() getField() getItem() isNaN() isNull() isNotNull() like() rlike() ilike()
A set of operations working with SparkDataFrame columns
avg()
avg
between()
between
cast()
Casts the column to a different data type.
column()
S4 class that represents a SparkDataFrame column
coalesce()
Coalesce
corr()
corr
cov() covar_samp() covar_pop()
cov
dropFields()
dropFields
endsWith()
endsWith
first()
Return the first row of a SparkDataFrame
last()
last
not() `!`(<Column>)
!
otherwise()
otherwise
startsWith()
startsWith
substr(<Column>)
substr
current_date() current_timestamp() date_trunc() dayofmonth() dayofweek() dayofyear() monthname() dayname() from_unixtime() hour() last_day() make_date() minute() month() quarter() second() timestamp_seconds() to_date() to_timestamp() unix_timestamp() weekofyear() window() year() trunc(<Column>)
Date time functions for Column operations
withField()
withField
over()
over
predict()
Makes predictions from a MLlib model
partitionBy()
partitionBy
rangeBetween()
rangeBetween
rowsBetween()
rowsBetween
windowOrderBy()
windowOrderBy
windowPartitionBy()
windowPartitionBy
WindowSpec-class
S4 class that represents a WindowSpec
`%in%`(<Column>)
Match a column with given values.
`%<=>%`
%<=>%
Spark MLlib

MLlib is Spark’s machine learning (ML) library

AFTSurvivalRegressionModel-class
S4 class that represents a AFTSurvivalRegressionModel
ALSModel-class
S4 class that represents an ALSModel
BisectingKMeansModel-class
S4 class that represents a BisectingKMeansModel
DecisionTreeClassificationModel-class
S4 class that represents a DecisionTreeClassificationModel
DecisionTreeRegressionModel-class
S4 class that represents a DecisionTreeRegressionModel
FMClassificationModel-class
S4 class that represents a FMClassificationModel
FMRegressionModel-class
S4 class that represents a FMRegressionModel
FPGrowthModel-class
S4 class that represents a FPGrowthModel
GBTClassificationModel-class
S4 class that represents a GBTClassificationModel
GBTRegressionModel-class
S4 class that represents a GBTRegressionModel
GaussianMixtureModel-class
S4 class that represents a GaussianMixtureModel
GeneralizedLinearRegressionModel-class
S4 class that represents a generalized linear model
glm(<formula>,<ANY>,<SparkDataFrame>)
Generalized Linear Models (R-compliant)
IsotonicRegressionModel-class
S4 class that represents an IsotonicRegressionModel
KMeansModel-class
S4 class that represents a KMeansModel
KSTest-class
S4 class that represents an KSTest
LDAModel-class
S4 class that represents an LDAModel
LinearRegressionModel-class
S4 class that represents a LinearRegressionModel
LinearSVCModel-class
S4 class that represents an LinearSVCModel
LogisticRegressionModel-class
S4 class that represents an LogisticRegressionModel
MultilayerPerceptronClassificationModel-class
S4 class that represents a MultilayerPerceptronClassificationModel
NaiveBayesModel-class
S4 class that represents a NaiveBayesModel
PowerIterationClustering-class
S4 class that represents a PowerIterationClustering
PrefixSpan-class
S4 class that represents a PrefixSpan
RandomForestClassificationModel-class
S4 class that represents a RandomForestClassificationModel
RandomForestRegressionModel-class
S4 class that represents a RandomForestRegressionModel
fitted()
Get fitted result from a k-means model
freqItems(<SparkDataFrame>,<character>)
Finding frequent items for columns, possibly with false positives
spark.als() summary(<ALSModel>) predict(<ALSModel>) write.ml(<ALSModel>,<character>)
Alternating Least Squares (ALS) for Collaborative Filtering
spark.bisectingKmeans() summary(<BisectingKMeansModel>) predict(<BisectingKMeansModel>) fitted(<BisectingKMeansModel>) write.ml(<BisectingKMeansModel>,<character>)
Bisecting K-Means Clustering Model
spark.decisionTree() summary(<DecisionTreeRegressionModel>) print(<summary.DecisionTreeRegressionModel>) summary(<DecisionTreeClassificationModel>) print(<summary.DecisionTreeClassificationModel>) predict(<DecisionTreeRegressionModel>) predict(<DecisionTreeClassificationModel>) write.ml(<DecisionTreeRegressionModel>,<character>) write.ml(<DecisionTreeClassificationModel>,<character>)
Decision Tree Model for Regression and Classification
spark.fmClassifier() summary(<FMClassificationModel>) predict(<FMClassificationModel>) write.ml(<FMClassificationModel>,<character>)
Factorization Machines Classification Model
spark.fmRegressor() summary(<FMRegressionModel>) predict(<FMRegressionModel>) write.ml(<FMRegressionModel>,<character>)
Factorization Machines Regression Model
spark.fpGrowth() spark.freqItemsets() spark.associationRules() predict(<FPGrowthModel>) write.ml(<FPGrowthModel>,<character>)
FP-growth
spark.gaussianMixture() summary(<GaussianMixtureModel>) predict(<GaussianMixtureModel>) write.ml(<GaussianMixtureModel>,<character>)
Multivariate Gaussian Mixture Model (GMM)
spark.gbt() summary(<GBTRegressionModel>) print(<summary.GBTRegressionModel>) summary(<GBTClassificationModel>) print(<summary.GBTClassificationModel>) predict(<GBTRegressionModel>) predict(<GBTClassificationModel>) write.ml(<GBTRegressionModel>,<character>) write.ml(<GBTClassificationModel>,<character>)
Gradient Boosted Tree Model for Regression and Classification
spark.glm() summary(<GeneralizedLinearRegressionModel>) print(<summary.GeneralizedLinearRegressionModel>) predict(<GeneralizedLinearRegressionModel>) write.ml(<GeneralizedLinearRegressionModel>,<character>)
Generalized Linear Models
spark.isoreg() summary(<IsotonicRegressionModel>) predict(<IsotonicRegressionModel>) write.ml(<IsotonicRegressionModel>,<character>)
Isotonic Regression Model
spark.kmeans() summary(<KMeansModel>) predict(<KMeansModel>) write.ml(<KMeansModel>,<character>)
K-Means Clustering Model
spark.kstest() summary(<KSTest>) print(<summary.KSTest>)
(One-Sample) Kolmogorov-Smirnov Test
spark.lda() spark.posterior() spark.perplexity() summary(<LDAModel>) write.ml(<LDAModel>,<character>)
Latent Dirichlet Allocation
spark.lm() summary(<LinearRegressionModel>) predict(<LinearRegressionModel>) write.ml(<LinearRegressionModel>,<character>)
Linear Regression Model
spark.logit() summary(<LogisticRegressionModel>) predict(<LogisticRegressionModel>) write.ml(<LogisticRegressionModel>,<character>)
Logistic Regression Model
spark.mlp() summary(<MultilayerPerceptronClassificationModel>) predict(<MultilayerPerceptronClassificationModel>) write.ml(<MultilayerPerceptronClassificationModel>,<character>)
Multilayer Perceptron Classification Model
spark.naiveBayes() summary(<NaiveBayesModel>) predict(<NaiveBayesModel>) write.ml(<NaiveBayesModel>,<character>)
Naive Bayes Models
spark.assignClusters()
PowerIterationClustering
spark.findFrequentSequentialPatterns()
PrefixSpan
spark.randomForest() summary(<RandomForestRegressionModel>) print(<summary.RandomForestRegressionModel>) summary(<RandomForestClassificationModel>) print(<summary.RandomForestClassificationModel>) predict(<RandomForestRegressionModel>) predict(<RandomForestClassificationModel>) write.ml(<RandomForestRegressionModel>,<character>) write.ml(<RandomForestClassificationModel>,<character>)
Random Forest Model for Regression and Classification
spark.survreg() summary(<AFTSurvivalRegressionModel>) predict(<AFTSurvivalRegressionModel>) write.ml(<AFTSurvivalRegressionModel>,<character>)
Accelerated Failure Time (AFT) Survival Regression Model
spark.svmLinear() predict(<LinearSVCModel>) summary(<LinearSVCModel>) write.ml(<LinearSVCModel>,<character>)
Linear SVM Model
read.ml()
Load a fitted MLlib model from the input path.
write.ml()
Saves the MLlib model to the input path
Spark Session and Context

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4