scipy.sparse.
dia_matrix#Sparse matrix with DIAgonal storage.
where D is a 2-D ndarray
with another sparse array or matrix S (equivalent to S.todia())
to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype=ādā.
where the data[k,:]
stores the diagonal entries for diagonal offsets[k]
(See example below)
Data type of the matrix
shape
2-tuple
Shape of the matrix
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros.
size
Number of stored values.
DIA format data array of the matrix
DIA format offset array of the matrix
T
Transpose.
Methods
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Sparse matrices with DIAgonal storage do not support slicing.
Examples
>>> import numpy as np >>> from scipy.sparse import dia_matrix >>> dia_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0) >>> offsets = np.array([0, -1, 2]) >>> dia_matrix((data, offsets), shape=(4, 4)).toarray() array([[1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4]])
>>> from scipy.sparse import dia_matrix >>> n = 10 >>> ex = np.ones(n) >>> data = np.array([ex, 2 * ex, ex]) >>> offsets = np.array([-1, 0, 1]) >>> dia_matrix((data, offsets), shape=(n, n)).toarray() array([[2., 1., 0., ..., 0., 0., 0.], [1., 2., 1., ..., 0., 0., 0.], [0., 1., 2., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 2., 1., 0.], [0., 0., 0., ..., 1., 2., 1.], [0., 0., 0., ..., 0., 1., 2.]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4