scipy.sparse.
dia_array#Sparse array with DIAgonal storage.
where D is a 2-D ndarray
with another sparse array or matrix S (equivalent to S.todia())
to construct an empty array with shape (M, N), dtype is optional, defaulting to dtype=ādā.
where the data[k,:]
stores the diagonal entries for diagonal offsets[k]
(See example below)
Data type of the array
Shape of the array
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros.
size
Number of stored values.
DIA format data array of the array
DIA format offset array of the array
T
Transpose.
Methods
Notes
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Sparse arrays with DIAgonal storage do not support slicing.
Examples
>>> import numpy as np >>> from scipy.sparse import dia_array >>> dia_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0) >>> offsets = np.array([0, -1, 2]) >>> dia_array((data, offsets), shape=(4, 4)).toarray() array([[1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4]])
>>> from scipy.sparse import dia_array >>> n = 10 >>> ex = np.ones(n) >>> data = np.array([ex, 2 * ex, ex]) >>> offsets = np.array([-1, 0, 1]) >>> dia_array((data, offsets), shape=(n, n)).toarray() array([[2., 1., 0., ..., 0., 0., 0.], [1., 2., 1., ..., 0., 0., 0.], [0., 1., 2., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 2., 1., 0.], [0., 0., 0., ..., 1., 2., 1.], [0., 0., 0., ..., 0., 1., 2.]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4