pyscipopt
importModel, quicksum
20d = {1: 80, 2: 270, 3: 250, 4: 160, 5: 180}
23M = {1: 500, 2: 500, 3: 500}
26c = {(1, 1): 4, (1, 2): 6, (1, 3): 9,
27(2, 1): 5, (2, 2): 4, (2, 3): 7,
28(3, 1): 6, (3, 2): 3, (3, 3): 4,
29(4, 1): 8, (4, 2): 5, (4, 3): 3,
30(5, 1): 10, (5, 2): 8, (5, 3): 4,
33model = Model(
"transportation")
40x[i, j] = model.addVar(vtype=
"C", name=
"x(%s,%s)"% (i, j))
44model.addCons(sum(x[i, j]
forj
inJ
if(i, j)
inx) == d[i], name=
"Demand(%s)"% i)
48model.addCons(sum(x[i, j]
fori
inI
if(i, j)
inx) <= M[j], name=
"Capacity(%s)"% j)
51model.setObjective(
quicksum(c[i, j] * x[i, j]
for(i, j)
inx),
"minimize")
55print(
"Optimal value:", model.getObjVal())
60 ifmodel.getVal(x[i, j]) > EPS:
61print(
"sending quantity %10s from factory %3s to customer %3s"% (model.getVal(x[i, j]), j, i))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4