Label Propagation classifier.
Read more in the User Guide.
String identifier for kernel function to use or the kernel function itself. Only ‘rbf’ and ‘knn’ strings are valid inputs. The function passed should take two inputs, each of shape (n_samples, n_features), and return a (n_samples, n_samples) shaped weight matrix.
Parameter for rbf kernel.
Parameter for knn kernel which need to be strictly positive.
Change maximum number of iterations allowed.
Convergence tolerance: threshold to consider the system at steady state.
The number of parallel jobs to run. None
means 1 unless in a joblib.parallel_backend
context. -1
means using all processors. See Glossary for more details.
Input array.
The distinct labels used in classifying instances.
Categorical distribution for each item.
Label assigned to each item during fit.
Number of features seen during fit.
Added in version 0.24.
n_features_in_
,)
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Added in version 1.0.
Number of iterations run.
See also
LabelSpreading
Alternate label propagation strategy more robust to noise.
References
Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
Examples
>>> import numpy as np >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) LabelPropagation(...)
Fit a semi-supervised label propagation model to X.
Training data, where n_samples
is the number of samples and n_features
is the number of features.
Target class values with unlabeled points marked as -1. All unlabeled samples will be transductively assigned labels internally, which are stored in transduction_
.
Returns the instance itself.
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
A MetadataRequest
encapsulating routing information.
Get parameters for this estimator.
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Parameter names mapped to their values.
Perform inductive inference across the model.
The data matrix.
Predictions for input data.
Predict probability for each possible outcome.
Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution).
The data matrix.
Normalized probability distributions across class labels.
Return accuracy on provided data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Test samples.
True labels for X
.
Sample weights.
Mean accuracy of self.predict(X)
w.r.t. y
.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline
). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Estimator parameters.
Estimator instance.
Configure whether metadata should be requested to be passed to the score
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it toscore
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in score
.
The updated object.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4