A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_log_error.html below:

root_mean_squared_log_error — scikit-learn 1.7.0 documentation

root_mean_squared_log_error#
sklearn.metrics.root_mean_squared_log_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')[source]#

Root mean squared logarithmic error regression loss.

Read more in the User Guide.

Added in version 1.4.

Parameters:
y_truearray-like of shape (n_samples,) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_predarray-like of shape (n_samples,) or (n_samples, n_outputs)

Estimated target values.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

multioutput{‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’

Defines aggregating of multiple output values. Array-like value defines weights used to average errors.

‘raw_values’ :

Returns a full set of errors when the input is of multioutput format.

‘uniform_average’ :

Errors of all outputs are averaged with uniform weight.

Returns:
lossfloat or ndarray of floats

A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target.

Examples

>>> from sklearn.metrics import root_mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> root_mean_squared_log_error(y_true, y_pred)
0.199...

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4