Compute cosine distance between samples in X and Y.
Cosine distance is defined as 1.0 minus the cosine similarity.
Read more in the User Guide.
Matrix X
.
Matrix Y
.
Returns the cosine distance between samples in X and Y.
Examples
>>> from sklearn.metrics.pairwise import cosine_distances >>> X = [[0, 0, 0], [1, 1, 1]] >>> Y = [[1, 0, 0], [1, 1, 0]] >>> cosine_distances(X, Y) array([[1. , 1. ], [0.422, 0.183]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4