Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Non-negative least squares#In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression.
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import r2_score
Generate some random data
Split the data in train set and test set
Fit the Non-Negative least squares.
from sklearn.linear_model import LinearRegression reg_nnls = LinearRegression(positive=True) y_pred_nnls = reg_nnls.fit(X_train, y_train).predict(X_test) r2_score_nnls = r2_score(y_test, y_pred_nnls) print("NNLS R2 score", r2_score_nnls)
NNLS R2 score 0.8225220806196525
Fit an OLS.
reg_ols = LinearRegression() y_pred_ols = reg_ols.fit(X_train, y_train).predict(X_test) r2_score_ols = r2_score(y_test, y_pred_ols) print("OLS R2 score", r2_score_ols)
OLS R2 score 0.7436926291700354
Comparing the regression coefficients between OLS and NNLS, we can observe they are highly correlated (the dashed line is the identity relation), but the non-negative constraint shrinks some to 0. The Non-Negative Least squares inherently yield sparse results.
fig, ax = plt.subplots() ax.plot(reg_ols.coef_, reg_nnls.coef_, linewidth=0, marker=".") low_x, high_x = ax.get_xlim() low_y, high_y = ax.get_ylim() low = max(low_x, low_y) high = min(high_x, high_y) ax.plot([low, high], [low, high], ls="--", c=".3", alpha=0.5) ax.set_xlabel("OLS regression coefficients", fontweight="bold") ax.set_ylabel("NNLS regression coefficients", fontweight="bold")
Text(55.847222222222214, 0.5, 'NNLS regression coefficients')
Total running time of the script: (0 minutes 0.064 seconds)
Related examples
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4