Evaluate a score by cross-validation.
Read more in the User Guide.
The object to use to fit the data.
The data to fit. Can be for example a list, or an array.
The target variable to try to predict in the case of supervised learning.
Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv instance (e.g., GroupKFold
).
Changed in version 1.4: groups
can only be passed if metadata routing is not enabled via sklearn.set_config(enable_metadata_routing=True)
. When routing is enabled, pass groups
alongside other metadata via the params
argument instead. E.g.: cross_val_score(..., params={'groups': groups})
.
Strategy to evaluate the performance of the estimator
across cross-validation splits.
str: see String name scorers for options.
callable: a scorer callable object (e.g., function) with signature scorer(estimator, X, y)
, which should return only a single value. See Callable scorers for details.
None
: the estimator
’s default evaluation criterion is used.
Similar to the use of scoring
in cross_validate
but only a single metric is permitted.
Determines the cross-validation splitting strategy. Possible inputs for cv are:
None
, to use the default 5-fold cross validation,
int, to specify the number of folds in a (Stratified)KFold
,
An iterable that generates (train, test) splits as arrays of indices.
For int
/None
inputs, if the estimator is a classifier and y
is either binary or multiclass, StratifiedKFold
is used. In all other cases, KFold
is used. These splitters are instantiated with shuffle=False
so the splits will be the same across calls.
Refer User Guide for the various cross-validation strategies that can be used here.
Changed in version 0.22: cv
default value if None
changed from 3-fold to 5-fold.
Number of jobs to run in parallel. Training the estimator and computing the score are parallelized over the cross-validation splits. None
means 1 unless in a joblib.parallel_backend
context. -1
means using all processors. See Glossary for more details.
The verbosity level.
Parameters to pass to the underlying estimator’s fit
, the scorer, and the CV splitter.
Added in version 1.4.
Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
None
, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs
An int, giving the exact number of total jobs that are spawned
A str, giving an expression as a function of n_jobs, as in ‘2*n_jobs’
Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised.
Added in version 0.20.
Array of scores of the estimator for each run of the cross validation.
See also
cross_validate
To run cross-validation on multiple metrics and also to return train scores, fit times and score times.
cross_val_predict
Get predictions from each split of cross-validation for diagnostic purposes.
sklearn.metrics.make_scorer
Make a scorer from a performance metric or loss function.
Examples
>>> from sklearn import datasets, linear_model >>> from sklearn.model_selection import cross_val_score >>> diabetes = datasets.load_diabetes() >>> X = diabetes.data[:150] >>> y = diabetes.target[:150] >>> lasso = linear_model.Lasso() >>> print(cross_val_score(lasso, X, y, cv=3)) [0.3315057 0.08022103 0.03531816]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4