A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://scikit-learn.org/dev/modules/generated/sklearn.metrics.completeness_score.html below:

completeness_score — scikit-learn 1.8.dev0 documentation

completeness_score#
sklearn.metrics.completeness_score(labels_true, labels_pred)[source]#

Compute completeness metric of a cluster labeling given a ground truth.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the homogeneity_score which will be different in general.

Read more in the User Guide.

Parameters:
labels_truearray-like of shape (n_samples,)

Ground truth class labels to be used as a reference.

labels_predarray-like of shape (n_samples,)

Cluster labels to evaluate.

Returns:
completenessfloat

Score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling.

References

Examples

Perfect labelings are complete:

>>> from sklearn.metrics.cluster import completeness_score
>>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that assign all classes members to the same clusters are still complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0]))
1.0
>>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1]))
0.999

If classes members are split across different clusters, the assignment cannot be complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1]))
0.0
>>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3]))
0.0
Gallery examples#

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4