Build a text report showing the main classification metrics.
Read more in the User Guide.
Ground truth (correct) target values.
Estimated targets as returned by a classifier.
Optional list of label indices to include in the report.
Optional display names matching the labels (same order).
Sample weights.
Number of digits for formatting output floating point values. When output_dict
is True
, this will be ignored and the returned values will not be rounded.
If True, return output as dict.
Added in version 0.20.
Sets the value to return when there is a zero division. If set to “warn”, this acts as 0, but warnings are also raised.
Added in version 1.3: np.nan
option was added.
Text summary of the precision, recall, F1 score for each class. Dictionary returned if output_dict is True. Dictionary has the following structure:
{'label 1': {'precision':0.5, 'recall':1.0, 'f1-score':0.67, 'support':1}, 'label 2': { ... }, ... }
The reported averages include macro average (averaging the unweighted mean per label), weighted average (averaging the support-weighted mean per label), and sample average (only for multilabel classification). Micro average (averaging the total true positives, false negatives and false positives) is only shown for multi-label or multi-class with a subset of classes, because it corresponds to accuracy otherwise and would be the same for all metrics. See also precision_recall_fscore_support
for more details on averages.
Note that in binary classification, recall of the positive class is also known as “sensitivity”; recall of the negative class is “specificity”.
Examples
>>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 accuracy 0.60 5 macro avg 0.50 0.56 0.49 5 weighted avg 0.70 0.60 0.61 5 >>> y_pred = [1, 1, 0] >>> y_true = [1, 1, 1] >>> print(classification_report(y_true, y_pred, labels=[1, 2, 3])) precision recall f1-score support 1 1.00 0.67 0.80 3 2 0.00 0.00 0.00 0 3 0.00 0.00 0.00 0 micro avg 1.00 0.67 0.80 3 macro avg 0.33 0.22 0.27 3 weighted avg 1.00 0.67 0.80 3
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4