Linear regression model that predicts conditional quantiles.
The linear QuantileRegressor
optimizes the pinball loss for a desired quantile
and is robust to outliers.
This model uses an L1 regularization like Lasso
.
Read more in the User Guide.
Added in version 1.0.
The quantile that the model tries to predict. It must be strictly between 0 and 1. If 0.5 (default), the model predicts the 50% quantile, i.e. the median.
Regularization constant that multiplies the L1 penalty term.
Whether or not to fit the intercept.
Method used by scipy.optimize.linprog
to solve the linear programming formulation.
It is recommended to use the highs methods because they are the fastest ones. Solvers “highs-ds”, “highs-ipm” and “highs” support sparse input data and, in fact, always convert to sparse csc.
From scipy>=1.11.0
, “interior-point” is not available anymore.
Changed in version 1.4: The default of solver
changed to "highs"
in version 1.4.
Additional parameters passed to scipy.optimize.linprog
as options. If None
and if solver='interior-point'
, then {"lstsq": True}
is passed to scipy.optimize.linprog
for the sake of stability.
Estimated coefficients for the features.
The intercept of the model, aka bias term.
Number of features seen during fit.
Added in version 0.24.
n_features_in_
,)
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Added in version 1.0.
The actual number of iterations performed by the solver.
See also
Lasso
The Lasso is a linear model that estimates sparse coefficients with l1 regularization.
HuberRegressor
Linear regression model that is robust to outliers.
Examples
>>> from sklearn.linear_model import QuantileRegressor >>> import numpy as np >>> n_samples, n_features = 10, 2 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> # the two following lines are optional in practice >>> from sklearn.utils.fixes import sp_version, parse_version >>> reg = QuantileRegressor(quantile=0.8).fit(X, y) >>> np.mean(y <= reg.predict(X)) np.float64(0.8)
Fit the model according to the given training data.
Training data.
Target values.
Sample weights.
Returns self.
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
A MetadataRequest
encapsulating routing information.
Get parameters for this estimator.
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Parameter names mapped to their values.
Predict using the linear model.
Samples.
Returns predicted values.
Return coefficient of determination on test data.
The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted)
, where n_samples_fitted
is the number of samples used in the fitting for the estimator.
True values for X
.
Sample weights.
\(R^2\) of self.predict(X)
w.r.t. y
.
Notes
The \(R^2\) score used when calling score
on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score
. This influences the score
method of all the multioutput regressors (except for MultiOutputRegressor
).
Configure whether metadata should be requested to be passed to the fit
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it tofit
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in fit
.
The updated object.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline
). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Estimator parameters.
Estimator instance.
Configure whether metadata should be requested to be passed to the score
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it toscore
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in score
.
The updated object.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4