Passive Aggressive Regressor.
Read more in the User Guide.
Maximum step size (regularization). Defaults to 1.0.
Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True.
The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the fit
method, and not the partial_fit
method.
Added in version 0.19.
The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol).
Added in version 0.19.
Whether to use early stopping to terminate training when validation. score is not improving. If set to True, it will automatically set aside a fraction of training data as validation and terminate training when validation score is not improving by at least tol for n_iter_no_change consecutive epochs.
Added in version 0.20.
The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.
Added in version 0.20.
Number of iterations with no improvement to wait before early stopping.
Added in version 0.20.
Whether or not the training data should be shuffled after each epoch.
The verbosity level.
The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper.
If the difference between the current prediction and the correct label is below this threshold, the model is not updated.
Used to shuffle the training data, when shuffle
is set to True
. Pass an int for reproducible output across multiple function calls. See Glossary.
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.
Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled.
When set to True, computes the averaged SGD weights and stores the result in the coef_
attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples.
Added in version 0.19: parameter average to use weights averaging in SGD.
Weights assigned to the features.
Constants in decision function.
Number of features seen during fit.
Added in version 0.24.
n_features_in_
,)
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Added in version 1.0.
The actual number of iterations to reach the stopping criterion.
Number of weight updates performed during training. Same as (n_iter_ * n_samples + 1)
.
See also
SGDRegressor
Linear model fitted by minimizing a regularized empirical loss with SGD.
References
Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).
Examples
>>> from sklearn.linear_model import PassiveAggressiveRegressor >>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, random_state=0) >>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0, ... tol=1e-3) >>> regr.fit(X, y) PassiveAggressiveRegressor(max_iter=100, random_state=0) >>> print(regr.coef_) [20.48736655 34.18818427 67.59122734 87.94731329] >>> print(regr.intercept_) [-0.02306214] >>> print(regr.predict([[0, 0, 0, 0]])) [-0.02306214]
Convert coefficient matrix to dense array format.
Converts the coef_
member (back) to a numpy.ndarray. This is the default format of coef_
and is required for fitting, so calling this method is only required on models that have previously been sparsified; otherwise, it is a no-op.
Fitted estimator.
Fit linear model with Passive Aggressive algorithm.
Training data.
Target values.
The initial coefficients to warm-start the optimization.
The initial intercept to warm-start the optimization.
Fitted estimator.
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
A MetadataRequest
encapsulating routing information.
Get parameters for this estimator.
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Parameter names mapped to their values.
Fit linear model with Passive Aggressive algorithm.
Subset of training data.
Subset of target values.
Fitted estimator.
Predict using the linear model.
Input data.
Predicted target values per element in X.
Return coefficient of determination on test data.
The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted)
, where n_samples_fitted
is the number of samples used in the fitting for the estimator.
True values for X
.
Sample weights.
\(R^2\) of self.predict(X)
w.r.t. y
.
Notes
The \(R^2\) score used when calling score
on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score
. This influences the score
method of all the multioutput regressors (except for MultiOutputRegressor
).
Configure whether metadata should be requested to be passed to the fit
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it tofit
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for coef_init
parameter in fit
.
Metadata routing for intercept_init
parameter in fit
.
The updated object.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline
). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Estimator parameters.
Estimator instance.
Configure whether metadata should be requested to be passed to the partial_fit
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topartial_fit
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it topartial_fit
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in partial_fit
.
The updated object.
Configure whether metadata should be requested to be passed to the score
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it toscore
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in score
.
The updated object.
Convert coefficient matrix to sparse format.
Converts the coef_
member to a scipy.sparse matrix, which for L1-regularized models can be much more memory- and storage-efficient than the usual numpy.ndarray representation.
The intercept_
member is not converted.
Fitted estimator.
Notes
For non-sparse models, i.e. when there are not many zeros in coef_
, this may actually increase memory usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be computed with (coef_ == 0).sum()
, must be more than 50% for this to provide significant benefits.
After calling this method, further fitting with the partial_fit method (if any) will not work until you call densify.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4