Approximate a RBF kernel feature map using random Fourier features.
It implements a variant of Random Kitchen Sinks.[1]
Read more in the User Guide.
Parameter of RBF kernel: exp(-gamma * x^2). If gamma='scale'
is passed then it uses 1 / (n_features * X.var()) as value of gamma.
Added in version 1.2: The option "scale"
was added in 1.2.
Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space.
Pseudo-random number generator to control the generation of the random weights and random offset when fitting the training data. Pass an int for reproducible output across multiple function calls. See Glossary.
Random offset used to compute the projection in the n_components
dimensions of the feature space.
Random projection directions drawn from the Fourier transform of the RBF kernel.
Number of features seen during fit.
Added in version 0.24.
n_features_in_
,)
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Added in version 1.0.
Notes
See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.
[1] “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by A. Rahimi and Benjamin Recht. (https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)
Examples
>>> from sklearn.kernel_approximation import RBFSampler >>> from sklearn.linear_model import SGDClassifier >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] >>> y = [0, 0, 1, 1] >>> rbf_feature = RBFSampler(gamma=1, random_state=1) >>> X_features = rbf_feature.fit_transform(X) >>> clf = SGDClassifier(max_iter=5, tol=1e-3) >>> clf.fit(X_features, y) SGDClassifier(max_iter=5) >>> clf.score(X_features, y) 1.0
Fit the model with X.
Samples random projection according to n_features.
Training data, where n_samples
is the number of samples and n_features
is the number of features.
Target values (None for unsupervised transformations).
Returns the instance itself.
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Input samples.
Target values (None for unsupervised transformations).
Additional fit parameters. Pass only if the estimator accepts additional params in its fit
method.
Transformed array.
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: ["class_name0", "class_name1", "class_name2"]
.
Only used to validate feature names with the names seen in fit
.
Transformed feature names.
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
A MetadataRequest
encapsulating routing information.
Get parameters for this estimator.
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Parameter names mapped to their values.
Set output container.
See Introducing the set_output API for an example on how to use the API.
Configure output of transform
and fit_transform
.
"default"
: Default output format of a transformer
"pandas"
: DataFrame output
"polars"
: Polars output
None
: Transform configuration is unchanged
Added in version 1.4: "polars"
option was added.
Estimator instance.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline
). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Estimator parameters.
Estimator instance.
Apply the approximate feature map to X.
New data, where n_samples
is the number of samples and n_features
is the number of features.
Returns the instance itself.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4