Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Imputing missing values before building an estimator#Missing values can be replaced by the mean, the median or the most frequent value using the basic SimpleImputer
.
In this example we will investigate different imputation techniques:
imputation by the constant value 0
imputation by the mean value of each feature
k nearest neighbor imputation
iterative imputation
In all the cases, for each feature, we add a new feature indicating the missingness.
We will use two datasets: Diabetes dataset which consists of 10 feature variables collected from diabetes patients with an aim to predict disease progression and California housing dataset for which the target is the median house value for California districts.
As neither of these datasets have missing values, we will remove some values to create new versions with artificially missing data. The performance of RandomForestRegressor
on the full original dataset is then compared the performance on the altered datasets with the artificially missing values imputed using different techniques.
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-ClauseDownload the data and make missing values sets#
First we download the two datasets. Diabetes dataset is shipped with scikit-learn. It has 442 entries, each with 10 features. California housing dataset is much larger with 20640 entries and 8 features. It needs to be downloaded. We will only use the first 300 entries for the sake of speeding up the calculations but feel free to use the whole dataset.
import numpy as np from sklearn.datasets import fetch_california_housing, load_diabetes X_diabetes, y_diabetes = load_diabetes(return_X_y=True) X_california, y_california = fetch_california_housing(return_X_y=True) X_diabetes = X_diabetes[:300] y_diabetes = y_diabetes[:300] X_california = X_california[:300] y_california = y_california[:300] def add_missing_values(X_full, y_full, rng): n_samples, n_features = X_full.shape # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = int(n_samples * missing_rate) missing_samples = np.zeros(n_samples, dtype=bool) missing_samples[:n_missing_samples] = True rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) X_missing = X_full.copy() X_missing[missing_samples, missing_features] = np.nan y_missing = y_full.copy() return X_missing, y_missing rng = np.random.RandomState(42) X_miss_diabetes, y_miss_diabetes = add_missing_values(X_diabetes, y_diabetes, rng) X_miss_california, y_miss_california = add_missing_values( X_california, y_california, rng )Impute the missing data and score#
Now we will write a function which will score the results on the differently imputed data, including the case of no imputation for full data. We will use RandomForestRegressor
for the target regression.
from sklearn.ensemble import RandomForestRegressor # To use the experimental IterativeImputer, we need to explicitly ask for it: from sklearn.experimental import enable_iterative_imputer # noqa: F401 from sklearn.impute import IterativeImputer, KNNImputer, SimpleImputer from sklearn.model_selection import cross_val_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler N_SPLITS = 4 def get_score(X, y, imputer=None): regressor = RandomForestRegressor(random_state=0) if imputer is not None: estimator = make_pipeline(imputer, regressor) else: estimator = regressor scores = cross_val_score( estimator, X, y, scoring="neg_mean_squared_error", cv=N_SPLITS ) return scores.mean(), scores.std() x_labels = [] mses_diabetes = np.zeros(5) stds_diabetes = np.zeros(5) mses_california = np.zeros(5) stds_california = np.zeros(5)Estimate the score#
First, we want to estimate the score on the original data:
mses_diabetes[0], stds_diabetes[0] = get_score(X_diabetes, y_diabetes) mses_california[0], stds_california[0] = get_score(X_california, y_california) x_labels.append("Full Data")Replace missing values by 0#
Now we will estimate the score on the data where the missing values are replaced by 0:
imputer = SimpleImputer(strategy="constant", fill_value=0, add_indicator=True) mses_diabetes[1], stds_diabetes[1] = get_score( X_miss_diabetes, y_miss_diabetes, imputer ) mses_california[1], stds_california[1] = get_score( X_miss_california, y_miss_california, imputer ) x_labels.append("Zero Imputation")Impute missing values with mean#
imputer = SimpleImputer(strategy="mean", add_indicator=True) mses_diabetes[2], stds_diabetes[2] = get_score( X_miss_diabetes, y_miss_diabetes, imputer ) mses_california[2], stds_california[2] = get_score( X_miss_california, y_miss_california, imputer ) x_labels.append("Mean Imputation")kNN-imputation of the missing values#
KNNImputer
imputes missing values using the weighted or unweighted mean of the desired number of nearest neighbors. If your features have vastly different scales (as in the California housing dataset), consider re-scaling them to potentially improve performance.
imputer = KNNImputer(add_indicator=True) mses_diabetes[3], stds_diabetes[3] = get_score( X_miss_diabetes, y_miss_diabetes, imputer ) mses_california[3], stds_california[3] = get_score( X_miss_california, y_miss_california, make_pipeline(RobustScaler(), imputer) ) x_labels.append("KNN Imputation")Iterative imputation of the missing values#
Another option is the IterativeImputer
. This uses round-robin regression, modeling each feature with missing values as a function of other features, in turn. We use the class’s default choice of the regressor model (BayesianRidge
) to predict missing feature values. The performance of the predictor may be negatively affected by vastly different scales of the features, so we re-scale the features in the California housing dataset.
imputer = IterativeImputer(add_indicator=True) mses_diabetes[4], stds_diabetes[4] = get_score( X_miss_diabetes, y_miss_diabetes, imputer ) mses_california[4], stds_california[4] = get_score( X_miss_california, y_miss_california, make_pipeline(RobustScaler(), imputer) ) x_labels.append("Iterative Imputation") mses_diabetes = mses_diabetes * -1 mses_california = mses_california * -1Plot the results#
Finally we are going to visualize the score:
import matplotlib.pyplot as plt n_bars = len(mses_diabetes) xval = np.arange(n_bars) colors = ["r", "g", "b", "orange", "black"] # plot diabetes results plt.figure(figsize=(12, 6)) ax1 = plt.subplot(121) for j in xval: ax1.barh( j, mses_diabetes[j], xerr=stds_diabetes[j], color=colors[j], alpha=0.6, align="center", ) ax1.set_title("Imputation Techniques with Diabetes Data") ax1.set_xlim(left=np.min(mses_diabetes) * 0.9, right=np.max(mses_diabetes) * 1.1) ax1.set_yticks(xval) ax1.set_xlabel("MSE") ax1.invert_yaxis() ax1.set_yticklabels(x_labels) # plot california dataset results ax2 = plt.subplot(122) for j in xval: ax2.barh( j, mses_california[j], xerr=stds_california[j], color=colors[j], alpha=0.6, align="center", ) ax2.set_title("Imputation Techniques with California Data") ax2.set_yticks(xval) ax2.set_xlabel("MSE") ax2.invert_yaxis() ax2.set_yticklabels([""] * n_bars) plt.show()
You can also try different techniques. For instance, the median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a ‘long tail’).
Total running time of the script: (0 minutes 9.060 seconds)
Related examples
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4