Regressor that makes predictions using simple rules.
This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real problems.
Read more in the User Guide.
Added in version 0.13.
Strategy to use to generate predictions.
“mean”: always predicts the mean of the training set
“median”: always predicts the median of the training set
“quantile”: always predicts a specified quantile of the training set, provided with the quantile parameter.
“constant”: always predicts a constant value that is provided by the user.
The explicit constant as predicted by the “constant” strategy. This parameter is useful only for the “constant” strategy.
The quantile to predict using the “quantile” strategy. A quantile of 0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the maximum.
Mean or median or quantile of the training targets or constant value given by the user.
Number of features seen during fit.
n_features_in_
,)
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Number of outputs.
See also
DummyClassifier
Classifier that makes predictions using simple rules.
Examples
>>> import numpy as np >>> from sklearn.dummy import DummyRegressor >>> X = np.array([1.0, 2.0, 3.0, 4.0]) >>> y = np.array([2.0, 3.0, 5.0, 10.0]) >>> dummy_regr = DummyRegressor(strategy="mean") >>> dummy_regr.fit(X, y) DummyRegressor() >>> dummy_regr.predict(X) array([5., 5., 5., 5.]) >>> dummy_regr.score(X, y) 0.0
Fit the baseline regressor.
Training data.
Target values.
Sample weights.
Fitted estimator.
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
A MetadataRequest
encapsulating routing information.
Get parameters for this estimator.
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Parameter names mapped to their values.
Perform classification on test vectors X.
Test data.
Whether to return the standard deviation of posterior prediction. All zeros in this case.
Added in version 0.20.
Predicted target values for X.
Standard deviation of predictive distribution of query points.
Return the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v)
, where u
is the residual sum of squares ((y_true - y_pred) ** 2).sum()
and v
is the total sum of squares ((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Test samples. Passing None as test samples gives the same result as passing real test samples, since DummyRegressor
operates independently of the sampled observations.
True values for X.
Sample weights.
R^2 of self.predict(X)
w.r.t. y.
Configure whether metadata should be requested to be passed to the fit
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it tofit
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in fit
.
The updated object.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline
). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Estimator parameters.
Estimator instance.
Configure whether metadata should be requested to be passed to the predict
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it topredict
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for return_std
parameter in predict
.
The updated object.
Configure whether metadata should be requested to be passed to the score
method.
Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.
False
: metadata is not requested and the meta-estimator will not pass it toscore
.
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Metadata routing for sample_weight
parameter in score
.
The updated object.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4