A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://scikit-learn.org/dev/developers/../api/index.html below:

API Reference — scikit-learn 1.8.dev0 documentation

config_context

Context manager to temporarily change the global scikit-learn configuration.

sklearn

get_config

Retrieve the current scikit-learn configuration.

sklearn

set_config

Set global scikit-learn configuration.

sklearn

show_versions

Print useful debugging information”

sklearn

BaseEstimator

Base class for all estimators in scikit-learn.

sklearn.base

BiclusterMixin

Mixin class for all bicluster estimators in scikit-learn.

sklearn.base

ClassNamePrefixFeaturesOutMixin

Mixin class for transformers that generate their own names by prefixing.

sklearn.base

ClassifierMixin

Mixin class for all classifiers in scikit-learn.

sklearn.base

ClusterMixin

Mixin class for all cluster estimators in scikit-learn.

sklearn.base

DensityMixin

Mixin class for all density estimators in scikit-learn.

sklearn.base

MetaEstimatorMixin

Mixin class for all meta estimators in scikit-learn.

sklearn.base

OneToOneFeatureMixin

Provides get_feature_names_out for simple transformers.

sklearn.base

OutlierMixin

Mixin class for all outlier detection estimators in scikit-learn.

sklearn.base

RegressorMixin

Mixin class for all regression estimators in scikit-learn.

sklearn.base

TransformerMixin

Mixin class for all transformers in scikit-learn.

sklearn.base

clone

Construct a new unfitted estimator with the same parameters.

sklearn.base

is_classifier

Return True if the given estimator is (probably) a classifier.

sklearn.base

is_clusterer

Return True if the given estimator is (probably) a clusterer.

sklearn.base

is_regressor

Return True if the given estimator is (probably) a regressor.

sklearn.base

is_outlier_detector

Return True if the given estimator is (probably) an outlier detector.

sklearn.base

CalibratedClassifierCV

Probability calibration with isotonic regression or logistic regression.

sklearn.calibration

calibration_curve

Compute true and predicted probabilities for a calibration curve.

sklearn.calibration

CalibrationDisplay

Calibration curve (also known as reliability diagram) visualization.

sklearn.calibration

AffinityPropagation

Perform Affinity Propagation Clustering of data.

sklearn.cluster

AgglomerativeClustering

Agglomerative Clustering.

sklearn.cluster

Birch

Implements the BIRCH clustering algorithm.

sklearn.cluster

BisectingKMeans

Bisecting K-Means clustering.

sklearn.cluster

DBSCAN

Perform DBSCAN clustering from vector array or distance matrix.

sklearn.cluster

FeatureAgglomeration

Agglomerate features.

sklearn.cluster

HDBSCAN

Cluster data using hierarchical density-based clustering.

sklearn.cluster

KMeans

K-Means clustering.

sklearn.cluster

MeanShift

Mean shift clustering using a flat kernel.

sklearn.cluster

MiniBatchKMeans

Mini-Batch K-Means clustering.

sklearn.cluster

OPTICS

Estimate clustering structure from vector array.

sklearn.cluster

SpectralBiclustering

Spectral biclustering (Kluger, 2003).

sklearn.cluster

SpectralClustering

Apply clustering to a projection of the normalized Laplacian.

sklearn.cluster

SpectralCoclustering

Spectral Co-Clustering algorithm (Dhillon, 2001).

sklearn.cluster

affinity_propagation

Perform Affinity Propagation Clustering of data.

sklearn.cluster

cluster_optics_dbscan

Perform DBSCAN extraction for an arbitrary epsilon.

sklearn.cluster

cluster_optics_xi

Automatically extract clusters according to the Xi-steep method.

sklearn.cluster

compute_optics_graph

Compute the OPTICS reachability graph.

sklearn.cluster

dbscan

Perform DBSCAN clustering from vector array or distance matrix.

sklearn.cluster

estimate_bandwidth

Estimate the bandwidth to use with the mean-shift algorithm.

sklearn.cluster

k_means

Perform K-means clustering algorithm.

sklearn.cluster

kmeans_plusplus

Init n_clusters seeds according to k-means++.

sklearn.cluster

mean_shift

Perform mean shift clustering of data using a flat kernel.

sklearn.cluster

spectral_clustering

Apply clustering to a projection of the normalized Laplacian.

sklearn.cluster

ward_tree

Ward clustering based on a Feature matrix.

sklearn.cluster

ColumnTransformer

Applies transformers to columns of an array or pandas DataFrame.

sklearn.compose

TransformedTargetRegressor

Meta-estimator to regress on a transformed target.

sklearn.compose

make_column_selector

Create a callable to select columns to be used with

sklearn.compose

make_column_transformer

Construct a ColumnTransformer from the given transformers.

sklearn.compose

EllipticEnvelope

An object for detecting outliers in a Gaussian distributed dataset.

sklearn.covariance

EmpiricalCovariance

Maximum likelihood covariance estimator.

sklearn.covariance

GraphicalLasso

Sparse inverse covariance estimation with an l1-penalized estimator.

sklearn.covariance

GraphicalLassoCV

Sparse inverse covariance w/ cross-validated choice of the l1 penalty.

sklearn.covariance

LedoitWolf

LedoitWolf Estimator.

sklearn.covariance

MinCovDet

Minimum Covariance Determinant (MCD): robust estimator of covariance.

sklearn.covariance

OAS

Oracle Approximating Shrinkage Estimator.

sklearn.covariance

ShrunkCovariance

Covariance estimator with shrinkage.

sklearn.covariance

empirical_covariance

Compute the Maximum likelihood covariance estimator.

sklearn.covariance

graphical_lasso

L1-penalized covariance estimator.

sklearn.covariance

ledoit_wolf

Estimate the shrunk Ledoit-Wolf covariance matrix.

sklearn.covariance

ledoit_wolf_shrinkage

Estimate the shrunk Ledoit-Wolf covariance matrix.

sklearn.covariance

oas

Estimate covariance with the Oracle Approximating Shrinkage.

sklearn.covariance

shrunk_covariance

Calculate covariance matrices shrunk on the diagonal.

sklearn.covariance

CCA

Canonical Correlation Analysis, also known as “Mode B” PLS.

sklearn.cross_decomposition

PLSCanonical

Partial Least Squares transformer and regressor.

sklearn.cross_decomposition

PLSRegression

PLS regression.

sklearn.cross_decomposition

PLSSVD

Partial Least Square SVD.

sklearn.cross_decomposition

clear_data_home

Delete all the content of the data home cache.

sklearn.datasets

dump_svmlight_file

Dump the dataset in svmlight / libsvm file format.

sklearn.datasets

fetch_20newsgroups

Load the filenames and data from the 20 newsgroups dataset (classification).

sklearn.datasets

fetch_20newsgroups_vectorized

Load and vectorize the 20 newsgroups dataset (classification).

sklearn.datasets

fetch_california_housing

Load the California housing dataset (regression).

sklearn.datasets

fetch_covtype

Load the covertype dataset (classification).

sklearn.datasets

fetch_file

Fetch a file from the web if not already present in the local folder.

sklearn.datasets

fetch_kddcup99

Load the kddcup99 dataset (classification).

sklearn.datasets

fetch_lfw_pairs

Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).

sklearn.datasets

fetch_lfw_people

Load the Labeled Faces in the Wild (LFW) people dataset (classification).

sklearn.datasets

fetch_olivetti_faces

Load the Olivetti faces data-set from AT&T (classification).

sklearn.datasets

fetch_openml

Fetch dataset from openml by name or dataset id.

sklearn.datasets

fetch_rcv1

Load the RCV1 multilabel dataset (classification).

sklearn.datasets

fetch_species_distributions

Loader for species distribution dataset from Phillips et. al. (2006).

sklearn.datasets

get_data_home

Return the path of the scikit-learn data directory.

sklearn.datasets

load_breast_cancer

Load and return the breast cancer Wisconsin dataset (classification).

sklearn.datasets

load_diabetes

Load and return the diabetes dataset (regression).

sklearn.datasets

load_digits

Load and return the digits dataset (classification).

sklearn.datasets

load_files

Load text files with categories as subfolder names.

sklearn.datasets

load_iris

Load and return the iris dataset (classification).

sklearn.datasets

load_linnerud

Load and return the physical exercise Linnerud dataset.

sklearn.datasets

load_sample_image

Load the numpy array of a single sample image.

sklearn.datasets

load_sample_images

Load sample images for image manipulation.

sklearn.datasets

load_svmlight_file

Load datasets in the svmlight / libsvm format into sparse CSR matrix.

sklearn.datasets

load_svmlight_files

Load dataset from multiple files in SVMlight format.

sklearn.datasets

load_wine

Load and return the wine dataset (classification).

sklearn.datasets

make_biclusters

Generate a constant block diagonal structure array for biclustering.

sklearn.datasets

make_blobs

Generate isotropic Gaussian blobs for clustering.

sklearn.datasets

make_checkerboard

Generate an array with block checkerboard structure for biclustering.

sklearn.datasets

make_circles

Make a large circle containing a smaller circle in 2d.

sklearn.datasets

make_classification

Generate a random n-class classification problem.

sklearn.datasets

make_friedman1

Generate the “Friedman #1” regression problem.

sklearn.datasets

make_friedman2

Generate the “Friedman #2” regression problem.

sklearn.datasets

make_friedman3

Generate the “Friedman #3” regression problem.

sklearn.datasets

make_gaussian_quantiles

Generate isotropic Gaussian and label samples by quantile.

sklearn.datasets

make_hastie_10_2

Generate data for binary classification used in Hastie et al. 2009, Example 10.2.

sklearn.datasets

make_low_rank_matrix

Generate a mostly low rank matrix with bell-shaped singular values.

sklearn.datasets

make_moons

Make two interleaving half circles.

sklearn.datasets

make_multilabel_classification

Generate a random multilabel classification problem.

sklearn.datasets

make_regression

Generate a random regression problem.

sklearn.datasets

make_s_curve

Generate an S curve dataset.

sklearn.datasets

make_sparse_coded_signal

Generate a signal as a sparse combination of dictionary elements.

sklearn.datasets

make_sparse_spd_matrix

Generate a sparse symmetric definite positive matrix.

sklearn.datasets

make_sparse_uncorrelated

Generate a random regression problem with sparse uncorrelated design.

sklearn.datasets

make_spd_matrix

Generate a random symmetric, positive-definite matrix.

sklearn.datasets

make_swiss_roll

Generate a swiss roll dataset.

sklearn.datasets

DictionaryLearning

Dictionary learning.

sklearn.decomposition

FactorAnalysis

Factor Analysis (FA).

sklearn.decomposition

FastICA

FastICA: a fast algorithm for Independent Component Analysis.

sklearn.decomposition

IncrementalPCA

Incremental principal components analysis (IPCA).

sklearn.decomposition

KernelPCA

Kernel Principal component analysis (KPCA).

sklearn.decomposition

LatentDirichletAllocation

Latent Dirichlet Allocation with online variational Bayes algorithm.

sklearn.decomposition

MiniBatchDictionaryLearning

Mini-batch dictionary learning.

sklearn.decomposition

MiniBatchNMF

Mini-Batch Non-Negative Matrix Factorization (NMF).

sklearn.decomposition

MiniBatchSparsePCA

Mini-batch Sparse Principal Components Analysis.

sklearn.decomposition

NMF

Non-Negative Matrix Factorization (NMF).

sklearn.decomposition

PCA

Principal component analysis (PCA).

sklearn.decomposition

SparseCoder

Sparse coding.

sklearn.decomposition

SparsePCA

Sparse Principal Components Analysis (SparsePCA).

sklearn.decomposition

TruncatedSVD

Dimensionality reduction using truncated SVD (aka LSA).

sklearn.decomposition

dict_learning

Solve a dictionary learning matrix factorization problem.

sklearn.decomposition

dict_learning_online

Solve a dictionary learning matrix factorization problem online.

sklearn.decomposition

fastica

Perform Fast Independent Component Analysis.

sklearn.decomposition

non_negative_factorization

Compute Non-negative Matrix Factorization (NMF).

sklearn.decomposition

sparse_encode

Sparse coding.

sklearn.decomposition

LinearDiscriminantAnalysis

Linear Discriminant Analysis.

sklearn.discriminant_analysis

QuadraticDiscriminantAnalysis

Quadratic Discriminant Analysis.

sklearn.discriminant_analysis

DummyClassifier

DummyClassifier makes predictions that ignore the input features.

sklearn.dummy

DummyRegressor

Regressor that makes predictions using simple rules.

sklearn.dummy

AdaBoostClassifier

An AdaBoost classifier.

sklearn.ensemble

AdaBoostRegressor

An AdaBoost regressor.

sklearn.ensemble

BaggingClassifier

A Bagging classifier.

sklearn.ensemble

BaggingRegressor

A Bagging regressor.

sklearn.ensemble

ExtraTreesClassifier

An extra-trees classifier.

sklearn.ensemble

ExtraTreesRegressor

An extra-trees regressor.

sklearn.ensemble

GradientBoostingClassifier

Gradient Boosting for classification.

sklearn.ensemble

GradientBoostingRegressor

Gradient Boosting for regression.

sklearn.ensemble

HistGradientBoostingClassifier

Histogram-based Gradient Boosting Classification Tree.

sklearn.ensemble

HistGradientBoostingRegressor

Histogram-based Gradient Boosting Regression Tree.

sklearn.ensemble

IsolationForest

Isolation Forest Algorithm.

sklearn.ensemble

RandomForestClassifier

A random forest classifier.

sklearn.ensemble

RandomForestRegressor

A random forest regressor.

sklearn.ensemble

RandomTreesEmbedding

An ensemble of totally random trees.

sklearn.ensemble

StackingClassifier

Stack of estimators with a final classifier.

sklearn.ensemble

StackingRegressor

Stack of estimators with a final regressor.

sklearn.ensemble

VotingClassifier

Soft Voting/Majority Rule classifier for unfitted estimators.

sklearn.ensemble

VotingRegressor

Prediction voting regressor for unfitted estimators.

sklearn.ensemble

ConvergenceWarning

Custom warning to capture convergence problems

sklearn.exceptions

DataConversionWarning

Warning used to notify implicit data conversions happening in the code.

sklearn.exceptions

DataDimensionalityWarning

Custom warning to notify potential issues with data dimensionality.

sklearn.exceptions

EfficiencyWarning

Warning used to notify the user of inefficient computation.

sklearn.exceptions

FitFailedWarning

Warning class used if there is an error while fitting the estimator.

sklearn.exceptions

InconsistentVersionWarning

Warning raised when an estimator is unpickled with an inconsistent version.

sklearn.exceptions

NotFittedError

Exception class to raise if estimator is used before fitting.

sklearn.exceptions

UndefinedMetricWarning

Warning used when the metric is invalid

sklearn.exceptions

EstimatorCheckFailedWarning

Warning raised when an estimator check from the common tests fails.

sklearn.exceptions

enable_halving_search_cv

Enables Successive Halving search-estimators

sklearn.experimental

enable_iterative_imputer

Enables IterativeImputer

sklearn.experimental

DictVectorizer

Transforms lists of feature-value mappings to vectors.

sklearn.feature_extraction

FeatureHasher

Implements feature hashing, aka the hashing trick.

sklearn.feature_extraction

PatchExtractor

Extracts patches from a collection of images.

sklearn.feature_extraction.image

extract_patches_2d

Reshape a 2D image into a collection of patches.

sklearn.feature_extraction.image

grid_to_graph

Graph of the pixel-to-pixel connections.

sklearn.feature_extraction.image

img_to_graph

Graph of the pixel-to-pixel gradient connections.

sklearn.feature_extraction.image

reconstruct_from_patches_2d

Reconstruct the image from all of its patches.

sklearn.feature_extraction.image

CountVectorizer

Convert a collection of text documents to a matrix of token counts.

sklearn.feature_extraction.text

HashingVectorizer

Convert a collection of text documents to a matrix of token occurrences.

sklearn.feature_extraction.text

TfidfTransformer

Transform a count matrix to a normalized tf or tf-idf representation.

sklearn.feature_extraction.text

TfidfVectorizer

Convert a collection of raw documents to a matrix of TF-IDF features.

sklearn.feature_extraction.text

GenericUnivariateSelect

Univariate feature selector with configurable strategy.

sklearn.feature_selection

RFE

Feature ranking with recursive feature elimination.

sklearn.feature_selection

RFECV

Recursive feature elimination with cross-validation to select features.

sklearn.feature_selection

SelectFdr

Filter: Select the p-values for an estimated false discovery rate.

sklearn.feature_selection

SelectFpr

Filter: Select the pvalues below alpha based on a FPR test.

sklearn.feature_selection

SelectFromModel

Meta-transformer for selecting features based on importance weights.

sklearn.feature_selection

SelectFwe

Filter: Select the p-values corresponding to Family-wise error rate.

sklearn.feature_selection

SelectKBest

Select features according to the k highest scores.

sklearn.feature_selection

SelectPercentile

Select features according to a percentile of the highest scores.

sklearn.feature_selection

SelectorMixin

Transformer mixin that performs feature selection given a support mask

sklearn.feature_selection

SequentialFeatureSelector

Transformer that performs Sequential Feature Selection.

sklearn.feature_selection

VarianceThreshold

Feature selector that removes all low-variance features.

sklearn.feature_selection

chi2

Compute chi-squared stats between each non-negative feature and class.

sklearn.feature_selection

f_classif

Compute the ANOVA F-value for the provided sample.

sklearn.feature_selection

f_regression

Univariate linear regression tests returning F-statistic and p-values.

sklearn.feature_selection

mutual_info_classif

Estimate mutual information for a discrete target variable.

sklearn.feature_selection

mutual_info_regression

Estimate mutual information for a continuous target variable.

sklearn.feature_selection

r_regression

Compute Pearson’s r for each features and the target.

sklearn.feature_selection

FrozenEstimator

Estimator that wraps a fitted estimator to prevent re-fitting.

sklearn.frozen

GaussianProcessClassifier

Gaussian process classification (GPC) based on Laplace approximation.

sklearn.gaussian_process

GaussianProcessRegressor

Gaussian process regression (GPR).

sklearn.gaussian_process

CompoundKernel

Kernel which is composed of a set of other kernels.

sklearn.gaussian_process.kernels

ConstantKernel

Constant kernel.

sklearn.gaussian_process.kernels

DotProduct

Dot-Product kernel.

sklearn.gaussian_process.kernels

ExpSineSquared

Exp-Sine-Squared kernel (aka periodic kernel).

sklearn.gaussian_process.kernels

Exponentiation

The Exponentiation kernel takes one base kernel and a scalar parameter

sklearn.gaussian_process.kernels

Hyperparameter

A kernel hyperparameter’s specification in form of a namedtuple.

sklearn.gaussian_process.kernels

Kernel

Base class for all kernels.

sklearn.gaussian_process.kernels

Matern

Matern kernel.

sklearn.gaussian_process.kernels

PairwiseKernel

Wrapper for kernels in sklearn.metrics.pairwise.

sklearn.gaussian_process.kernels

Product

The Product kernel takes two kernels \(k_1\) and \(k_2\)

sklearn.gaussian_process.kernels

RBF

Radial basis function kernel (aka squared-exponential kernel).

sklearn.gaussian_process.kernels

RationalQuadratic

Rational Quadratic kernel.

sklearn.gaussian_process.kernels

Sum

The Sum kernel takes two kernels \(k_1\) and \(k_2\)

sklearn.gaussian_process.kernels

WhiteKernel

White kernel.

sklearn.gaussian_process.kernels

IterativeImputer

Multivariate imputer that estimates each feature from all the others.

sklearn.impute

KNNImputer

Imputation for completing missing values using k-Nearest Neighbors.

sklearn.impute

MissingIndicator

Binary indicators for missing values.

sklearn.impute

SimpleImputer

Univariate imputer for completing missing values with simple strategies.

sklearn.impute

partial_dependence

Partial dependence of features.

sklearn.inspection

permutation_importance

Permutation importance for feature evaluation [Rd9e56ef97513-BRE].

sklearn.inspection

DecisionBoundaryDisplay

Decisions boundary visualization.

sklearn.inspection

PartialDependenceDisplay

Partial Dependence Plot (PDP) and Individual Conditional Expectation (ICE).

sklearn.inspection

IsotonicRegression

Isotonic regression model.

sklearn.isotonic

check_increasing

Determine whether y is monotonically correlated with x.

sklearn.isotonic

isotonic_regression

Solve the isotonic regression model.

sklearn.isotonic

AdditiveChi2Sampler

Approximate feature map for additive chi2 kernel.

sklearn.kernel_approximation

Nystroem

Approximate a kernel map using a subset of the training data.

sklearn.kernel_approximation

PolynomialCountSketch

Polynomial kernel approximation via Tensor Sketch.

sklearn.kernel_approximation

RBFSampler

Approximate a RBF kernel feature map using random Fourier features.

sklearn.kernel_approximation

SkewedChi2Sampler

Approximate feature map for “skewed chi-squared” kernel.

sklearn.kernel_approximation

KernelRidge

Kernel ridge regression.

sklearn.kernel_ridge

LogisticRegression

Logistic Regression (aka logit, MaxEnt) classifier.

sklearn.linear_model

LogisticRegressionCV

Logistic Regression CV (aka logit, MaxEnt) classifier.

sklearn.linear_model

PassiveAggressiveClassifier

Passive Aggressive Classifier.

sklearn.linear_model

Perceptron

Linear perceptron classifier.

sklearn.linear_model

RidgeClassifier

Classifier using Ridge regression.

sklearn.linear_model

RidgeClassifierCV

Ridge classifier with built-in cross-validation.

sklearn.linear_model

SGDClassifier

Linear classifiers (SVM, logistic regression, etc.) with SGD training.

sklearn.linear_model

SGDOneClassSVM

Solves linear One-Class SVM using Stochastic Gradient Descent.

sklearn.linear_model

LinearRegression

Ordinary least squares Linear Regression.

sklearn.linear_model

Ridge

Linear least squares with l2 regularization.

sklearn.linear_model

RidgeCV

Ridge regression with built-in cross-validation.

sklearn.linear_model

SGDRegressor

Linear model fitted by minimizing a regularized empirical loss with SGD.

sklearn.linear_model

ElasticNet

Linear regression with combined L1 and L2 priors as regularizer.

sklearn.linear_model

ElasticNetCV

Elastic Net model with iterative fitting along a regularization path.

sklearn.linear_model

Lars

Least Angle Regression model a.k.a. LAR.

sklearn.linear_model

LarsCV

Cross-validated Least Angle Regression model.

sklearn.linear_model

Lasso

Linear Model trained with L1 prior as regularizer (aka the Lasso).

sklearn.linear_model

LassoCV

Lasso linear model with iterative fitting along a regularization path.

sklearn.linear_model

LassoLars

Lasso model fit with Least Angle Regression a.k.a. Lars.

sklearn.linear_model

LassoLarsCV

Cross-validated Lasso, using the LARS algorithm.

sklearn.linear_model

LassoLarsIC

Lasso model fit with Lars using BIC or AIC for model selection.

sklearn.linear_model

OrthogonalMatchingPursuit

Orthogonal Matching Pursuit model (OMP).

sklearn.linear_model

OrthogonalMatchingPursuitCV

Cross-validated Orthogonal Matching Pursuit model (OMP).

sklearn.linear_model

ARDRegression

Bayesian ARD regression.

sklearn.linear_model

BayesianRidge

Bayesian ridge regression.

sklearn.linear_model

MultiTaskElasticNet

Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.

sklearn.linear_model

MultiTaskElasticNetCV

Multi-task L1/L2 ElasticNet with built-in cross-validation.

sklearn.linear_model

MultiTaskLasso

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

sklearn.linear_model

MultiTaskLassoCV

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

sklearn.linear_model

HuberRegressor

L2-regularized linear regression model that is robust to outliers.

sklearn.linear_model

QuantileRegressor

Linear regression model that predicts conditional quantiles.

sklearn.linear_model

RANSACRegressor

RANSAC (RANdom SAmple Consensus) algorithm.

sklearn.linear_model

TheilSenRegressor

Theil-Sen Estimator: robust multivariate regression model.

sklearn.linear_model

GammaRegressor

Generalized Linear Model with a Gamma distribution.

sklearn.linear_model

PoissonRegressor

Generalized Linear Model with a Poisson distribution.

sklearn.linear_model

TweedieRegressor

Generalized Linear Model with a Tweedie distribution.

sklearn.linear_model

PassiveAggressiveRegressor

Passive Aggressive Regressor.

sklearn.linear_model

enet_path

Compute elastic net path with coordinate descent.

sklearn.linear_model

lars_path

Compute Least Angle Regression or Lasso path using the LARS algorithm.

sklearn.linear_model

lars_path_gram

The lars_path in the sufficient stats mode.

sklearn.linear_model

lasso_path

Compute Lasso path with coordinate descent.

sklearn.linear_model

orthogonal_mp

Orthogonal Matching Pursuit (OMP).

sklearn.linear_model

orthogonal_mp_gram

Gram Orthogonal Matching Pursuit (OMP).

sklearn.linear_model

ridge_regression

Solve the ridge equation by the method of normal equations.

sklearn.linear_model

Isomap

Isomap Embedding.

sklearn.manifold

LocallyLinearEmbedding

Locally Linear Embedding.

sklearn.manifold

MDS

Multidimensional scaling.

sklearn.manifold

SpectralEmbedding

Spectral embedding for non-linear dimensionality reduction.

sklearn.manifold

TSNE

T-distributed Stochastic Neighbor Embedding.

sklearn.manifold

locally_linear_embedding

Perform a Locally Linear Embedding analysis on the data.

sklearn.manifold

smacof

Compute multidimensional scaling using the SMACOF algorithm.

sklearn.manifold

spectral_embedding

Project the sample on the first eigenvectors of the graph Laplacian.

sklearn.manifold

trustworthiness

Indicate to what extent the local structure is retained.

sklearn.manifold

check_scoring

Determine scorer from user options.

sklearn.metrics

get_scorer

Get a scorer from string.

sklearn.metrics

get_scorer_names

Get the names of all available scorers.

sklearn.metrics

make_scorer

Make a scorer from a performance metric or loss function.

sklearn.metrics

accuracy_score

Accuracy classification score.

sklearn.metrics

auc

Compute Area Under the Curve (AUC) using the trapezoidal rule.

sklearn.metrics

average_precision_score

Compute average precision (AP) from prediction scores.

sklearn.metrics

balanced_accuracy_score

Compute the balanced accuracy.

sklearn.metrics

brier_score_loss

Compute the Brier score loss.

sklearn.metrics

class_likelihood_ratios

Compute binary classification positive and negative likelihood ratios.

sklearn.metrics

classification_report

Build a text report showing the main classification metrics.

sklearn.metrics

cohen_kappa_score

Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.

sklearn.metrics

confusion_matrix

Compute confusion matrix to evaluate the accuracy of a classification.

sklearn.metrics

d2_log_loss_score

\(D^2\) score function, fraction of log loss explained.

sklearn.metrics

dcg_score

Compute Discounted Cumulative Gain.

sklearn.metrics

det_curve

Compute Detection Error Tradeoff (DET) for different probability thresholds.

sklearn.metrics

f1_score

Compute the F1 score, also known as balanced F-score or F-measure.

sklearn.metrics

fbeta_score

Compute the F-beta score.

sklearn.metrics

hamming_loss

Compute the average Hamming loss.

sklearn.metrics

hinge_loss

Average hinge loss (non-regularized).

sklearn.metrics

jaccard_score

Jaccard similarity coefficient score.

sklearn.metrics

log_loss

Log loss, aka logistic loss or cross-entropy loss.

sklearn.metrics

matthews_corrcoef

Compute the Matthews correlation coefficient (MCC).

sklearn.metrics

multilabel_confusion_matrix

Compute a confusion matrix for each class or sample.

sklearn.metrics

ndcg_score

Compute Normalized Discounted Cumulative Gain.

sklearn.metrics

precision_recall_curve

Compute precision-recall pairs for different probability thresholds.

sklearn.metrics

precision_recall_fscore_support

Compute precision, recall, F-measure and support for each class.

sklearn.metrics

precision_score

Compute the precision.

sklearn.metrics

recall_score

Compute the recall.

sklearn.metrics

roc_auc_score

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

sklearn.metrics

roc_curve

Compute Receiver operating characteristic (ROC).

sklearn.metrics

top_k_accuracy_score

Top-k Accuracy classification score.

sklearn.metrics

zero_one_loss

Zero-one classification loss.

sklearn.metrics

d2_absolute_error_score

\(D^2\) regression score function, fraction of absolute error explained.

sklearn.metrics

d2_pinball_score

\(D^2\) regression score function, fraction of pinball loss explained.

sklearn.metrics

d2_tweedie_score

\(D^2\) regression score function, fraction of Tweedie deviance explained.

sklearn.metrics

explained_variance_score

Explained variance regression score function.

sklearn.metrics

max_error

The max_error metric calculates the maximum residual error.

sklearn.metrics

mean_absolute_error

Mean absolute error regression loss.

sklearn.metrics

mean_absolute_percentage_error

Mean absolute percentage error (MAPE) regression loss.

sklearn.metrics

mean_gamma_deviance

Mean Gamma deviance regression loss.

sklearn.metrics

mean_pinball_loss

Pinball loss for quantile regression.

sklearn.metrics

mean_poisson_deviance

Mean Poisson deviance regression loss.

sklearn.metrics

mean_squared_error

Mean squared error regression loss.

sklearn.metrics

mean_squared_log_error

Mean squared logarithmic error regression loss.

sklearn.metrics

mean_tweedie_deviance

Mean Tweedie deviance regression loss.

sklearn.metrics

median_absolute_error

Median absolute error regression loss.

sklearn.metrics

r2_score

\(R^2\) (coefficient of determination) regression score function.

sklearn.metrics

root_mean_squared_error

Root mean squared error regression loss.

sklearn.metrics

root_mean_squared_log_error

Root mean squared logarithmic error regression loss.

sklearn.metrics

coverage_error

Coverage error measure.

sklearn.metrics

label_ranking_average_precision_score

Compute ranking-based average precision.

sklearn.metrics

label_ranking_loss

Compute Ranking loss measure.

sklearn.metrics

adjusted_mutual_info_score

Adjusted Mutual Information between two clusterings.

sklearn.metrics

adjusted_rand_score

Rand index adjusted for chance.

sklearn.metrics

calinski_harabasz_score

Compute the Calinski and Harabasz score.

sklearn.metrics

contingency_matrix

Build a contingency matrix describing the relationship between labels.

sklearn.metrics.cluster

pair_confusion_matrix

Pair confusion matrix arising from two clusterings.

sklearn.metrics.cluster

completeness_score

Compute completeness metric of a cluster labeling given a ground truth.

sklearn.metrics

davies_bouldin_score

Compute the Davies-Bouldin score.

sklearn.metrics

fowlkes_mallows_score

Measure the similarity of two clusterings of a set of points.

sklearn.metrics

homogeneity_completeness_v_measure

Compute the homogeneity and completeness and V-Measure scores at once.

sklearn.metrics

homogeneity_score

Homogeneity metric of a cluster labeling given a ground truth.

sklearn.metrics

mutual_info_score

Mutual Information between two clusterings.

sklearn.metrics

normalized_mutual_info_score

Normalized Mutual Information between two clusterings.

sklearn.metrics

rand_score

Rand index.

sklearn.metrics

silhouette_samples

Compute the Silhouette Coefficient for each sample.

sklearn.metrics

silhouette_score

Compute the mean Silhouette Coefficient of all samples.

sklearn.metrics

v_measure_score

V-measure cluster labeling given a ground truth.

sklearn.metrics

consensus_score

The similarity of two sets of biclusters.

sklearn.metrics

DistanceMetric

Uniform interface for fast distance metric functions.

sklearn.metrics

additive_chi2_kernel

Compute the additive chi-squared kernel between observations in X and Y.

sklearn.metrics.pairwise

chi2_kernel

Compute the exponential chi-squared kernel between X and Y.

sklearn.metrics.pairwise

cosine_distances

Compute cosine distance between samples in X and Y.

sklearn.metrics.pairwise

cosine_similarity

Compute cosine similarity between samples in X and Y.

sklearn.metrics.pairwise

distance_metrics

Valid metrics for pairwise_distances.

sklearn.metrics.pairwise

euclidean_distances

Compute the distance matrix between each pair from a feature array X and Y.

sklearn.metrics.pairwise

haversine_distances

Compute the Haversine distance between samples in X and Y.

sklearn.metrics.pairwise

kernel_metrics

Valid metrics for pairwise_kernels.

sklearn.metrics.pairwise

laplacian_kernel

Compute the laplacian kernel between X and Y.

sklearn.metrics.pairwise

linear_kernel

Compute the linear kernel between X and Y.

sklearn.metrics.pairwise

manhattan_distances

Compute the L1 distances between the vectors in X and Y.

sklearn.metrics.pairwise

nan_euclidean_distances

Calculate the euclidean distances in the presence of missing values.

sklearn.metrics.pairwise

paired_cosine_distances

Compute the paired cosine distances between X and Y.

sklearn.metrics.pairwise

paired_distances

Compute the paired distances between X and Y.

sklearn.metrics.pairwise

paired_euclidean_distances

Compute the paired euclidean distances between X and Y.

sklearn.metrics.pairwise

paired_manhattan_distances

Compute the paired L1 distances between X and Y.

sklearn.metrics.pairwise

pairwise_kernels

Compute the kernel between arrays X and optional array Y.

sklearn.metrics.pairwise

polynomial_kernel

Compute the polynomial kernel between X and Y.

sklearn.metrics.pairwise

rbf_kernel

Compute the rbf (gaussian) kernel between X and Y.

sklearn.metrics.pairwise

sigmoid_kernel

Compute the sigmoid kernel between X and Y.

sklearn.metrics.pairwise

pairwise_distances

Compute the distance matrix from a feature array X and optional Y.

sklearn.metrics

pairwise_distances_argmin

Compute minimum distances between one point and a set of points.

sklearn.metrics

pairwise_distances_argmin_min

Compute minimum distances between one point and a set of points.

sklearn.metrics

pairwise_distances_chunked

Generate a distance matrix chunk by chunk with optional reduction.

sklearn.metrics

ConfusionMatrixDisplay

Confusion Matrix visualization.

sklearn.metrics

DetCurveDisplay

Detection Error Tradeoff (DET) curve visualization.

sklearn.metrics

PrecisionRecallDisplay

Precision Recall visualization.

sklearn.metrics

PredictionErrorDisplay

Visualization of the prediction error of a regression model.

sklearn.metrics

RocCurveDisplay

ROC Curve visualization.

sklearn.metrics

BayesianGaussianMixture

Variational Bayesian estimation of a Gaussian mixture.

sklearn.mixture

GaussianMixture

Gaussian Mixture.

sklearn.mixture

GroupKFold

K-fold iterator variant with non-overlapping groups.

sklearn.model_selection

GroupShuffleSplit

Shuffle-Group(s)-Out cross-validation iterator.

sklearn.model_selection

KFold

K-Fold cross-validator.

sklearn.model_selection

LeaveOneGroupOut

Leave One Group Out cross-validator.

sklearn.model_selection

LeaveOneOut

Leave-One-Out cross-validator.

sklearn.model_selection

LeavePGroupsOut

Leave P Group(s) Out cross-validator.

sklearn.model_selection

LeavePOut

Leave-P-Out cross-validator.

sklearn.model_selection

PredefinedSplit

Predefined split cross-validator.

sklearn.model_selection

RepeatedKFold

Repeated K-Fold cross validator.

sklearn.model_selection

RepeatedStratifiedKFold

Repeated class-wise stratified K-Fold cross validator.

sklearn.model_selection

ShuffleSplit

Random permutation cross-validator.

sklearn.model_selection

StratifiedGroupKFold

Class-wise stratified K-Fold iterator variant with non-overlapping groups.

sklearn.model_selection

StratifiedKFold

Class-wise stratified K-Fold cross-validator.

sklearn.model_selection

StratifiedShuffleSplit

Class-wise stratified ShuffleSplit cross-validator.

sklearn.model_selection

TimeSeriesSplit

Time Series cross-validator.

sklearn.model_selection

check_cv

Input checker utility for building a cross-validator.

sklearn.model_selection

train_test_split

Split arrays or matrices into random train and test subsets.

sklearn.model_selection

GridSearchCV

Exhaustive search over specified parameter values for an estimator.

sklearn.model_selection

HalvingGridSearchCV

Search over specified parameter values with successive halving.

sklearn.model_selection

HalvingRandomSearchCV

Randomized search on hyper parameters.

sklearn.model_selection

ParameterGrid

Grid of parameters with a discrete number of values for each.

sklearn.model_selection

ParameterSampler

Generator on parameters sampled from given distributions.

sklearn.model_selection

RandomizedSearchCV

Randomized search on hyper parameters.

sklearn.model_selection

FixedThresholdClassifier

Binary classifier that manually sets the decision threshold.

sklearn.model_selection

TunedThresholdClassifierCV

Classifier that post-tunes the decision threshold using cross-validation.

sklearn.model_selection

cross_val_predict

Generate cross-validated estimates for each input data point.

sklearn.model_selection

cross_val_score

Evaluate a score by cross-validation.

sklearn.model_selection

cross_validate

Evaluate metric(s) by cross-validation and also record fit/score times.

sklearn.model_selection

learning_curve

Learning curve.

sklearn.model_selection

permutation_test_score

Evaluate the significance of a cross-validated score with permutations.

sklearn.model_selection

validation_curve

Validation curve.

sklearn.model_selection

LearningCurveDisplay

Learning Curve visualization.

sklearn.model_selection

ValidationCurveDisplay

Validation Curve visualization.

sklearn.model_selection

OneVsOneClassifier

One-vs-one multiclass strategy.

sklearn.multiclass

OneVsRestClassifier

One-vs-the-rest (OvR) multiclass strategy.

sklearn.multiclass

OutputCodeClassifier

(Error-Correcting) Output-Code multiclass strategy.

sklearn.multiclass

ClassifierChain

A multi-label model that arranges binary classifiers into a chain.

sklearn.multioutput

MultiOutputClassifier

Multi target classification.

sklearn.multioutput

MultiOutputRegressor

Multi target regression.

sklearn.multioutput

RegressorChain

A multi-label model that arranges regressions into a chain.

sklearn.multioutput

BernoulliNB

Naive Bayes classifier for multivariate Bernoulli models.

sklearn.naive_bayes

CategoricalNB

Naive Bayes classifier for categorical features.

sklearn.naive_bayes

ComplementNB

The Complement Naive Bayes classifier described in Rennie et al. (2003).

sklearn.naive_bayes

GaussianNB

Gaussian Naive Bayes (GaussianNB).

sklearn.naive_bayes

MultinomialNB

Naive Bayes classifier for multinomial models.

sklearn.naive_bayes

BallTree

BallTree for fast generalized N-point problems

sklearn.neighbors

KDTree

KDTree for fast generalized N-point problems

sklearn.neighbors

KNeighborsClassifier

Classifier implementing the k-nearest neighbors vote.

sklearn.neighbors

KNeighborsRegressor

Regression based on k-nearest neighbors.

sklearn.neighbors

KNeighborsTransformer

Transform X into a (weighted) graph of k nearest neighbors.

sklearn.neighbors

KernelDensity

Kernel Density Estimation.

sklearn.neighbors

LocalOutlierFactor

Unsupervised Outlier Detection using the Local Outlier Factor (LOF).

sklearn.neighbors

NearestCentroid

Nearest centroid classifier.

sklearn.neighbors

NearestNeighbors

Unsupervised learner for implementing neighbor searches.

sklearn.neighbors

NeighborhoodComponentsAnalysis

Neighborhood Components Analysis.

sklearn.neighbors

RadiusNeighborsClassifier

Classifier implementing a vote among neighbors within a given radius.

sklearn.neighbors

RadiusNeighborsRegressor

Regression based on neighbors within a fixed radius.

sklearn.neighbors

RadiusNeighborsTransformer

Transform X into a (weighted) graph of neighbors nearer than a radius.

sklearn.neighbors

kneighbors_graph

Compute the (weighted) graph of k-Neighbors for points in X.

sklearn.neighbors

radius_neighbors_graph

Compute the (weighted) graph of Neighbors for points in X.

sklearn.neighbors

sort_graph_by_row_values

Sort a sparse graph such that each row is stored with increasing values.

sklearn.neighbors

BernoulliRBM

Bernoulli Restricted Boltzmann Machine (RBM).

sklearn.neural_network

MLPClassifier

Multi-layer Perceptron classifier.

sklearn.neural_network

MLPRegressor

Multi-layer Perceptron regressor.

sklearn.neural_network

FeatureUnion

Concatenates results of multiple transformer objects.

sklearn.pipeline

Pipeline

A sequence of data transformers with an optional final predictor.

sklearn.pipeline

make_pipeline

Construct a Pipeline from the given estimators.

sklearn.pipeline

make_union

Construct a FeatureUnion from the given transformers.

sklearn.pipeline

Binarizer

Binarize data (set feature values to 0 or 1) according to a threshold.

sklearn.preprocessing

FunctionTransformer

Constructs a transformer from an arbitrary callable.

sklearn.preprocessing

KBinsDiscretizer

Bin continuous data into intervals.

sklearn.preprocessing

KernelCenterer

Center an arbitrary kernel matrix \(K\).

sklearn.preprocessing

LabelBinarizer

Binarize labels in a one-vs-all fashion.

sklearn.preprocessing

LabelEncoder

Encode target labels with value between 0 and n_classes-1.

sklearn.preprocessing

MaxAbsScaler

Scale each feature by its maximum absolute value.

sklearn.preprocessing

MinMaxScaler

Transform features by scaling each feature to a given range.

sklearn.preprocessing

MultiLabelBinarizer

Transform between iterable of iterables and a multilabel format.

sklearn.preprocessing

Normalizer

Normalize samples individually to unit norm.

sklearn.preprocessing

OneHotEncoder

Encode categorical features as a one-hot numeric array.

sklearn.preprocessing

OrdinalEncoder

Encode categorical features as an integer array.

sklearn.preprocessing

PolynomialFeatures

Generate polynomial and interaction features.

sklearn.preprocessing

PowerTransformer

Apply a power transform featurewise to make data more Gaussian-like.

sklearn.preprocessing

QuantileTransformer

Transform features using quantiles information.

sklearn.preprocessing

RobustScaler

Scale features using statistics that are robust to outliers.

sklearn.preprocessing

SplineTransformer

Generate univariate B-spline bases for features.

sklearn.preprocessing

StandardScaler

Standardize features by removing the mean and scaling to unit variance.

sklearn.preprocessing

TargetEncoder

Target Encoder for regression and classification targets.

sklearn.preprocessing

add_dummy_feature

Augment dataset with an additional dummy feature.

sklearn.preprocessing

binarize

Boolean thresholding of array-like or scipy.sparse matrix.

sklearn.preprocessing

label_binarize

Binarize labels in a one-vs-all fashion.

sklearn.preprocessing

maxabs_scale

Scale each feature to the [-1, 1] range without breaking the sparsity.

sklearn.preprocessing

minmax_scale

Transform features by scaling each feature to a given range.

sklearn.preprocessing

normalize

Scale input vectors individually to unit norm (vector length).

sklearn.preprocessing

power_transform

Parametric, monotonic transformation to make data more Gaussian-like.

sklearn.preprocessing

quantile_transform

Transform features using quantiles information.

sklearn.preprocessing

robust_scale

Standardize a dataset along any axis.

sklearn.preprocessing

scale

Standardize a dataset along any axis.

sklearn.preprocessing

GaussianRandomProjection

Reduce dimensionality through Gaussian random projection.

sklearn.random_projection

SparseRandomProjection

Reduce dimensionality through sparse random projection.

sklearn.random_projection

johnson_lindenstrauss_min_dim

Find a ‘safe’ number of components to randomly project to.

sklearn.random_projection

LabelPropagation

Label Propagation classifier.

sklearn.semi_supervised

LabelSpreading

LabelSpreading model for semi-supervised learning.

sklearn.semi_supervised

SelfTrainingClassifier

Self-training classifier.

sklearn.semi_supervised

LinearSVC

Linear Support Vector Classification.

sklearn.svm

LinearSVR

Linear Support Vector Regression.

sklearn.svm

NuSVC

Nu-Support Vector Classification.

sklearn.svm

NuSVR

Nu Support Vector Regression.

sklearn.svm

OneClassSVM

Unsupervised Outlier Detection.

sklearn.svm

SVC

C-Support Vector Classification.

sklearn.svm

SVR

Epsilon-Support Vector Regression.

sklearn.svm

l1_min_c

Return the lowest bound for C.

sklearn.svm

DecisionTreeClassifier

A decision tree classifier.

sklearn.tree

DecisionTreeRegressor

A decision tree regressor.

sklearn.tree

ExtraTreeClassifier

An extremely randomized tree classifier.

sklearn.tree

ExtraTreeRegressor

An extremely randomized tree regressor.

sklearn.tree

export_graphviz

Export a decision tree in DOT format.

sklearn.tree

export_text

Build a text report showing the rules of a decision tree.

sklearn.tree

plot_tree

Plot a decision tree.

sklearn.tree

Bunch

Container object exposing keys as attributes.

sklearn.utils

_safe_indexing

Return rows, items or columns of X using indices.

sklearn.utils

as_float_array

Convert an array-like to an array of floats.

sklearn.utils

assert_all_finite

Throw a ValueError if X contains NaN or infinity.

sklearn.utils

deprecated

Decorator to mark a function or class as deprecated.

sklearn.utils

estimator_html_repr

Build a HTML representation of an estimator.

sklearn.utils

gen_batches

Generator to create slices containing batch_size elements from 0 to n.

sklearn.utils

gen_even_slices

Generator to create n_packs evenly spaced slices going up to n.

sklearn.utils

indexable

Make arrays indexable for cross-validation.

sklearn.utils

murmurhash3_32

Compute the 32bit murmurhash3 of key at seed.

sklearn.utils

resample

Resample arrays or sparse matrices in a consistent way.

sklearn.utils

safe_mask

Return a mask which is safe to use on X.

sklearn.utils

safe_sqr

Element wise squaring of array-likes and sparse matrices.

sklearn.utils

shuffle

Shuffle arrays or sparse matrices in a consistent way.

sklearn.utils

Tags

Tags for the estimator.

sklearn.utils

InputTags

Tags for the input data.

sklearn.utils

TargetTags

Tags for the target data.

sklearn.utils

ClassifierTags

Tags for the classifier.

sklearn.utils

RegressorTags

Tags for the regressor.

sklearn.utils

TransformerTags

Tags for the transformer.

sklearn.utils

get_tags

Get estimator tags.

sklearn.utils

check_X_y

Input validation for standard estimators.

sklearn.utils

check_array

Input validation on an array, list, sparse matrix or similar.

sklearn.utils

check_consistent_length

Check that all arrays have consistent first dimensions.

sklearn.utils

check_random_state

Turn seed into a np.random.RandomState instance.

sklearn.utils

check_scalar

Validate scalar parameters type and value.

sklearn.utils

check_is_fitted

Perform is_fitted validation for estimator.

sklearn.utils.validation

check_memory

Check that memory is joblib.Memory-like.

sklearn.utils.validation

check_symmetric

Make sure that array is 2D, square and symmetric.

sklearn.utils.validation

column_or_1d

Ravel column or 1d numpy array, else raises an error.

sklearn.utils.validation

has_fit_parameter

Check whether the estimator’s fit method supports the given parameter.

sklearn.utils.validation

validate_data

Validate input data and set or check feature names and counts of the input.

sklearn.utils.validation

available_if

An attribute that is available only if check returns a truthy value.

sklearn.utils.metaestimators

compute_class_weight

Estimate class weights for unbalanced datasets.

sklearn.utils.class_weight

compute_sample_weight

Estimate sample weights by class for unbalanced datasets.

sklearn.utils.class_weight

is_multilabel

Check if y is in a multilabel format.

sklearn.utils.multiclass

type_of_target

Determine the type of data indicated by the target.

sklearn.utils.multiclass

unique_labels

Extract an ordered array of unique labels.

sklearn.utils.multiclass

density

Compute density of a sparse vector.

sklearn.utils.extmath

fast_logdet

Compute logarithm of determinant of a square matrix.

sklearn.utils.extmath

randomized_range_finder

Compute an orthonormal matrix whose range approximates the range of A.

sklearn.utils.extmath

randomized_svd

Compute a truncated randomized SVD.

sklearn.utils.extmath

safe_sparse_dot

Dot product that handle the sparse matrix case correctly.

sklearn.utils.extmath

weighted_mode

Return an array of the weighted modal (most common) value in the passed array.

sklearn.utils.extmath

incr_mean_variance_axis

Compute incremental mean and variance along an axis on a CSR or CSC matrix.

sklearn.utils.sparsefuncs

inplace_column_scale

Inplace column scaling of a CSC/CSR matrix.

sklearn.utils.sparsefuncs

inplace_csr_column_scale

Inplace column scaling of a CSR matrix.

sklearn.utils.sparsefuncs

inplace_row_scale

Inplace row scaling of a CSR or CSC matrix.

sklearn.utils.sparsefuncs

inplace_swap_column

Swap two columns of a CSC/CSR matrix in-place.

sklearn.utils.sparsefuncs

inplace_swap_row

Swap two rows of a CSC/CSR matrix in-place.

sklearn.utils.sparsefuncs

mean_variance_axis

Compute mean and variance along an axis on a CSR or CSC matrix.

sklearn.utils.sparsefuncs

inplace_csr_row_normalize_l1

Normalize inplace the rows of a CSR matrix or array by their L1 norm.

sklearn.utils.sparsefuncs_fast

inplace_csr_row_normalize_l2

Normalize inplace the rows of a CSR matrix or array by their L2 norm.

sklearn.utils.sparsefuncs_fast

single_source_shortest_path_length

Return the length of the shortest path from source to all reachable nodes.

sklearn.utils.graph

sample_without_replacement

Sample integers without replacement.

sklearn.utils.random

min_pos

Find the minimum value of an array over positive values.

sklearn.utils.arrayfuncs

MetadataRequest

Contains the metadata request info of a consumer.

sklearn.utils.metadata_routing

MetadataRouter

Coordinates metadata routing for a router object.

sklearn.utils.metadata_routing

MethodMapping

Stores the mapping between caller and callee methods for a router.

sklearn.utils.metadata_routing

get_routing_for_object

Get a Metadata{Router, Request} instance from the given object.

sklearn.utils.metadata_routing

process_routing

Validate and route metadata.

sklearn.utils.metadata_routing

all_displays

Get a list of all displays from sklearn.

sklearn.utils.discovery

all_estimators

Get a list of all estimators from sklearn.

sklearn.utils.discovery

all_functions

Get a list of all functions from sklearn.

sklearn.utils.discovery

check_estimator

Check if estimator adheres to scikit-learn conventions.

sklearn.utils.estimator_checks

parametrize_with_checks

Pytest specific decorator for parametrizing estimator checks.

sklearn.utils.estimator_checks

estimator_checks_generator

Iteratively yield all check callables for an estimator.

sklearn.utils.estimator_checks

Parallel

Tweak of joblib.Parallel that propagates the scikit-learn configuration.

sklearn.utils.parallel

delayed

Decorator used to capture the arguments of a function.

sklearn.utils.parallel


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4