A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://scikit-learn.org/dev/developers/../api/../modules/generated/sklearn.base.OutlierMixin.html below:

OutlierMixin — scikit-learn 1.8.dev0 documentation

OutlierMixin#
class sklearn.base.OutlierMixin[source]#

Mixin class for all outlier detection estimators in scikit-learn.

This mixin defines the following functionality:

Examples

>>> import numpy as np
>>> from sklearn.base import BaseEstimator, OutlierMixin
>>> class MyEstimator(OutlierMixin):
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.ones(shape=len(X))
>>> estimator = MyEstimator()
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> estimator.fit_predict(X)
array([1., 1., 1.])
fit_predict(X, y=None, **kwargs)[source]#

Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.

Parameters:
X{array-like, sparse matrix} of shape (n_samples, n_features)

The input samples.

yIgnored

Not used, present for API consistency by convention.

**kwargsdict

Arguments to be passed to fit.

Added in version 1.4.

Returns:
yndarray of shape (n_samples,)

1 for inliers, -1 for outliers.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4