Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Comparing Target Encoder with Other Encoders#The TargetEncoder
uses the value of the target to encode each categorical feature. In this example, we will compare three different approaches for handling categorical features: TargetEncoder
, OrdinalEncoder
, OneHotEncoder
and dropping the category.
Note
fit(X, y).transform(X)
does not equal fit_transform(X, y)
because a cross fitting scheme is used in fit_transform
for encoding. See the User Guide. for details.
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-ClauseLoading Data from OpenML#
First, we load the wine reviews dataset, where the target is the points given be a reviewer:
from sklearn.datasets import fetch_openml wine_reviews = fetch_openml(data_id=42074, as_frame=True) df = wine_reviews.frame df.head()country description designation points price province region_1 region_2 variety winery 0 US This tremendous 100% varietal wine hails from ... Martha's Vineyard 96 235.0 California Napa Valley Napa Cabernet Sauvignon Heitz 1 Spain Ripe aromas of fig, blackberry and cassis are ... Carodorum Selección Especial Reserva 96 110.0 Northern Spain Toro NaN Tinta de Toro Bodega Carmen Rodríguez 2 US Mac Watson honors the memory of a wine once ma... Special Selected Late Harvest 96 90.0 California Knights Valley Sonoma Sauvignon Blanc Macauley 3 US This spent 20 months in 30% new French oak, an... Reserve 96 65.0 Oregon Willamette Valley Willamette Valley Pinot Noir Ponzi 4 France This is the top wine from La Bégude, named aft... La Brûlade 95 66.0 Provence Bandol NaN Provence red blend Domaine de la Bégude
For this example, we use the following subset of numerical and categorical features in the data. The target are continuous values from 80 to 100:
numerical_features = ["price"] categorical_features = [ "country", "province", "region_1", "region_2", "variety", "winery", ] target_name = "points" X = df[numerical_features + categorical_features] y = df[target_name] _ = y.hist()Training and Evaluating Pipelines with Different Encoders#
In this section, we will evaluate pipelines with HistGradientBoostingRegressor
with different encoding strategies. First, we list out the encoders we will be using to preprocess the categorical features:
from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, TargetEncoder categorical_preprocessors = [ ("drop", "drop"), ("ordinal", OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1)), ( "one_hot", OneHotEncoder(handle_unknown="ignore", max_categories=20, sparse_output=False), ), ("target", TargetEncoder(target_type="continuous")), ]
Next, we evaluate the models using cross validation and record the results:
from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.model_selection import cross_validate from sklearn.pipeline import make_pipeline n_cv_folds = 3 max_iter = 20 results = [] def evaluate_model_and_store(name, pipe): result = cross_validate( pipe, X, y, scoring="neg_root_mean_squared_error", cv=n_cv_folds, return_train_score=True, ) rmse_test_score = -result["test_score"] rmse_train_score = -result["train_score"] results.append( { "preprocessor": name, "rmse_test_mean": rmse_test_score.mean(), "rmse_test_std": rmse_train_score.std(), "rmse_train_mean": rmse_train_score.mean(), "rmse_train_std": rmse_train_score.std(), } ) for name, categorical_preprocessor in categorical_preprocessors: preprocessor = ColumnTransformer( [ ("numerical", "passthrough", numerical_features), ("categorical", categorical_preprocessor, categorical_features), ] ) pipe = make_pipeline( preprocessor, HistGradientBoostingRegressor(random_state=0, max_iter=max_iter) ) evaluate_model_and_store(name, pipe)Native Categorical Feature Support#
In this section, we build and evaluate a pipeline that uses native categorical feature support in HistGradientBoostingRegressor
, which only supports up to 255 unique categories. In our dataset, the most of the categorical features have more than 255 unique categories:
n_unique_categories = df[categorical_features].nunique().sort_values(ascending=False) n_unique_categories
winery 14810 region_1 1236 variety 632 province 455 country 48 region_2 18 dtype: int64
To workaround the limitation above, we group the categorical features into low cardinality and high cardinality features. The high cardinality features will be target encoded and the low cardinality features will use the native categorical feature in gradient boosting.
high_cardinality_features = n_unique_categories[n_unique_categories > 255].index low_cardinality_features = n_unique_categories[n_unique_categories <= 255].index mixed_encoded_preprocessor = ColumnTransformer( [ ("numerical", "passthrough", numerical_features), ( "high_cardinality", TargetEncoder(target_type="continuous"), high_cardinality_features, ), ( "low_cardinality", OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), low_cardinality_features, ), ], verbose_feature_names_out=False, ) # The output of the of the preprocessor must be set to pandas so the # gradient boosting model can detect the low cardinality features. mixed_encoded_preprocessor.set_output(transform="pandas") mixed_pipe = make_pipeline( mixed_encoded_preprocessor, HistGradientBoostingRegressor( random_state=0, max_iter=max_iter, categorical_features=low_cardinality_features ), ) mixed_pipe
Pipeline(steps=[('columntransformer', ColumnTransformer(transformers=[('numerical', 'passthrough', ['price']), ('high_cardinality', TargetEncoder(target_type='continuous'), Index(['winery', 'region_1', 'variety', 'province'], dtype='object')), ('low_cardinality', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1), Index(['country', 'region_2'], dtype='object'))], verbose_feature_names_out=False)), ('histgradientboostingregressor', HistGradientBoostingRegressor(categorical_features=Index(['country', 'region_2'], dtype='object'), max_iter=20, random_state=0))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
columntransformer: ColumnTransformer
Parameters transformers [('numerical', ...), ('high_cardinality', ...), ...] remainder 'drop' sparse_threshold 0.3 n_jobs None transformer_weights None verbose False verbose_feature_names_out False force_int_remainder_cols 'deprecated'Index(['winery', 'region_1', 'variety', 'province'], dtype='object')Parameters categories 'auto' target_type 'continuous' smooth 'auto' cv 5 shuffle True random_state None
Index(['country', 'region_2'], dtype='object')Parameters categories 'auto' dtype <class 'numpy.float64'> handle_unknown 'use_encoded_value' unknown_value -1 encoded_missing_value nan min_frequency None max_categories None
HistGradientBoostingRegressor
Parameters loss 'squared_error' quantile None learning_rate 0.1 max_iter 20 max_leaf_nodes 31 max_depth None min_samples_leaf 20 l2_regularization 0.0 max_features 1.0 max_bins 255 categorical_features Index(['count...type='object') monotonic_cst None interaction_cst None warm_start False early_stopping 'auto' scoring 'loss' validation_fraction 0.1 n_iter_no_change 10 tol 1e-07 verbose 0 random_state 0Finally, we evaluate the pipeline using cross validation and record the results:
evaluate_model_and_store("mixed_target", mixed_pipe)Plotting the Results#
In this section, we display the results by plotting the test and train scores:
import matplotlib.pyplot as plt import pandas as pd results_df = ( pd.DataFrame(results).set_index("preprocessor").sort_values("rmse_test_mean") ) fig, (ax1, ax2) = plt.subplots( 1, 2, figsize=(12, 8), sharey=True, constrained_layout=True ) xticks = range(len(results_df)) name_to_color = dict( zip((r["preprocessor"] for r in results), ["C0", "C1", "C2", "C3", "C4"]) ) for subset, ax in zip(["test", "train"], [ax1, ax2]): mean, std = f"rmse_{subset}_mean", f"rmse_{subset}_std" data = results_df[[mean, std]].sort_values(mean) ax.bar( x=xticks, height=data[mean], yerr=data[std], width=0.9, color=[name_to_color[name] for name in data.index], ) ax.set( title=f"RMSE ({subset.title()})", xlabel="Encoding Scheme", xticks=xticks, xticklabels=data.index, )
When evaluating the predictive performance on the test set, dropping the categories perform the worst and the target encoders performs the best. This can be explained as follows:
Dropping the categorical features makes the pipeline less expressive and underfitting as a result;
Due to the high cardinality and to reduce the training time, the one-hot encoding scheme uses max_categories=20
which prevents the features from expanding too much, which can result in underfitting.
If we had not set max_categories=20
, the one-hot encoding scheme would have likely made the pipeline overfitting as the number of features explodes with rare category occurrences that are correlated with the target by chance (on the training set only);
The ordinal encoding imposes an arbitrary order to the features which are then treated as numerical values by the HistGradientBoostingRegressor
. Since this model groups numerical features in 256 bins per feature, many unrelated categories can be grouped together and as a result overall pipeline can underfit;
When using the target encoder, the same binning happens, but since the encoded values are statistically ordered by marginal association with the target variable, the binning use by the HistGradientBoostingRegressor
makes sense and leads to good results: the combination of smoothed target encoding and binning works as a good regularizing strategy against overfitting while not limiting the expressiveness of the pipeline too much.
Total running time of the script: (0 minutes 23.278 seconds)
Related examples
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4