Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Introducing theset_output
API#
This example will demonstrate the set_output
API to configure transformers to output pandas DataFrames. set_output
can be configured per estimator by calling the set_output
method or globally by setting set_config(transform_output="pandas")
. For details, see SLEP018.
First, we load the iris dataset as a DataFrame to demonstrate the set_output
API.
To configure an estimator such as preprocessing.StandardScaler
to return DataFrames, call set_output
. This feature requires pandas to be installed.
from sklearn.preprocessing import StandardScaler scaler = StandardScaler().set_output(transform="pandas") scaler.fit(X_train) X_test_scaled = scaler.transform(X_test) X_test_scaled.head()sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) 39 -0.894264 0.798301 -1.271411 -1.327605 12 -1.244466 -0.086944 -1.327407 -1.459074 48 -0.660797 1.462234 -1.271411 -1.327605 23 -0.894264 0.576989 -1.159419 -0.933197 81 -0.427329 -1.414810 -0.039497 -0.275851
set_output
can be called after fit
to configure transform
after the fact.
scaler2 = StandardScaler() scaler2.fit(X_train) X_test_np = scaler2.transform(X_test) print(f"Default output type: {type(X_test_np).__name__}") scaler2.set_output(transform="pandas") X_test_df = scaler2.transform(X_test) print(f"Configured pandas output type: {type(X_test_df).__name__}")
Default output type: ndarray Configured pandas output type: DataFrame
In a pipeline.Pipeline
, set_output
configures all steps to output DataFrames.
Pipeline(steps=[('standardscaler', StandardScaler()), ('selectpercentile', SelectPercentile(percentile=75)), ('logisticregression', LogisticRegression())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Each transformer in the pipeline is configured to return DataFrames. This means that the final logistic regression step contains the feature names of the input.
clf[-1].feature_names_in_
array(['sepal length (cm)', 'petal length (cm)', 'petal width (cm)'], dtype=object)
Note
If one uses the method set_params
, the transformer will be replaced by a new one with the default output format.
clf.set_params(standardscaler=StandardScaler()) clf.fit(X_train, y_train) clf[-1].feature_names_in_
array(['x0', 'x2', 'x3'], dtype=object)
To keep the intended behavior, use set_output
on the new transformer beforehand
scaler = StandardScaler().set_output(transform="pandas") clf.set_params(standardscaler=scaler) clf.fit(X_train, y_train) clf[-1].feature_names_in_
array(['sepal length (cm)', 'petal length (cm)', 'petal width (cm)'], dtype=object)
Next we load the titanic dataset to demonstrate set_output
with compose.ColumnTransformer
and heterogeneous data.
The set_output
API can be configured globally by using set_config
and setting transform_output
to "pandas"
.
from sklearn import set_config from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder, StandardScaler set_config(transform_output="pandas") num_pipe = make_pipeline(SimpleImputer(), StandardScaler()) num_cols = ["age", "fare"] ct = ColumnTransformer( ( ("numerical", num_pipe, num_cols), ( "categorical", OneHotEncoder( sparse_output=False, drop="if_binary", handle_unknown="ignore" ), ["embarked", "sex", "pclass"], ), ), verbose_feature_names_out=False, ) clf = make_pipeline(ct, SelectPercentile(percentile=50), LogisticRegression()) clf.fit(X_train, y_train) clf.score(X_test, y_test)
With the global configuration, all transformers output DataFrames. This allows us to easily plot the logistic regression coefficients with the corresponding feature names.
import pandas as pd log_reg = clf[-1] coef = pd.Series(log_reg.coef_.ravel(), index=log_reg.feature_names_in_) _ = coef.sort_values().plot.barh()
In order to demonstrate the config_context
functionality below, let us first reset transform_output
to its default value.
When configuring the output type with config_context
the configuration at the time when transform
or fit_transform
are called is what counts. Setting these only when you construct or fit the transformer has no effect.
StandardScaler()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
with config_context(transform_output="pandas"): # the output of transform will be a Pandas DataFrame X_test_scaled = scaler.transform(X_test[num_cols]) X_test_scaled.head()age fare 629 0.628306 -0.063210 688 -0.057984 -0.515704 439 1.314596 0.566624 664 -0.675645 -0.512279 669 -0.744274 -0.496950
outside of the context manager, the output will be a NumPy array
X_test_scaled = scaler.transform(X_test[num_cols]) X_test_scaled[:5]
array([[ 0.62830616, -0.06320955], [-0.05798371, -0.51570367], [ 1.31459603, 0.56662405], [-0.6756446 , -0.51227857], [-0.74427358, -0.49694966]])
Total running time of the script: (0 minutes 0.145 seconds)
Related examples
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4