Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
A demo of the mean-shift clustering algorithm#Reference:
Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets import make_blobsGenerate sample data#
centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)Compute clustering with MeanShift#
# The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_)
number of estimated clusters : 3Plot result#
import matplotlib.pyplot as plt plt.figure(1) plt.clf() colors = ["#dede00", "#377eb8", "#f781bf"] markers = ["x", "o", "^"] for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], markers[k], color=col) plt.plot( cluster_center[0], cluster_center[1], markers[k], markerfacecolor=col, markeredgecolor="k", markersize=14, ) plt.title("Estimated number of clusters: %d" % n_clusters_) plt.show()
Total running time of the script: (0 minutes 0.413 seconds)
Related examples
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4