Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Template Matching#We use template matching to identify the occurrence of an image patch (in this case, a sub-image centered on a single coin). Here, we return a single match (the exact same coin), so the maximum value in the match_template
result corresponds to the coin location. The other coins look similar, and thus have local maxima; if you expect multiple matches, you should use a proper peak-finding function.
The match_template
function uses fast, normalized cross-correlation [1] to find instances of the template in the image. Note that the peaks in the output of match_template
correspond to the origin (i.e. top-left corner) of the template.
import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.feature import match_template image = data.coins() coin = image[170:220, 75:130] result = match_template(image, coin) ij = np.unravel_index(np.argmax(result), result.shape) x, y = ij[::-1] fig = plt.figure(figsize=(8, 3)) ax1 = plt.subplot(1, 3, 1) ax2 = plt.subplot(1, 3, 2) ax3 = plt.subplot(1, 3, 3, sharex=ax2, sharey=ax2) ax1.imshow(coin, cmap=plt.cm.gray) ax1.set_axis_off() ax1.set_title('template') ax2.imshow(image, cmap=plt.cm.gray) ax2.set_axis_off() ax2.set_title('image') # highlight matched region hcoin, wcoin = coin.shape rect = plt.Rectangle((x, y), wcoin, hcoin, edgecolor='r', facecolor='none') ax2.add_patch(rect) ax3.imshow(result) ax3.set_axis_off() ax3.set_title('`match_template`\nresult') # highlight matched region ax3.autoscale(False) ax3.plot(x, y, 'o', markeredgecolor='r', markerfacecolor='none', markersize=10) plt.show()
Total running time of the script: (0 minutes 0.213 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4