This illustrates the make_shifted_dataset()
dataset generator. Each method consists of generating source data and shifted target data. We illustrate here: covariate shift, target shift, concept drift, and sample bias. See detailed description of each shift in [1].
def plot_shifted_dataset(shift, random_state=42): """Plot source and shifted target data for a given type of shift. The possible shifts are 'covariate_shift', 'target_shift', 'concept_drift', or 'subspace'. We use here the same random seed for multiple calls to ensure same distributions. """ X, y, sample_domain = make_shifted_datasets( n_samples_source=20, n_samples_target=20, shift=shift, noise=0.3, label="multiclass", random_state=random_state, ) X_source, X_target, y_source, y_target = source_target_split( X, y, sample_domain=sample_domain ) fig, (ax1, ax2) = plt.subplots(1, 2, sharex="row", sharey="row", figsize=(8, 4)) fig.suptitle(shift.replace("_", " ").title(), fontsize=14) plt.subplots_adjust(bottom=0.15) ax1.scatter( X_source[:, 0], X_source[:, 1], c=y_source, cmap="tab10", vmax=10, alpha=0.5, ) ax1.set_title("Source data") ax1.set_xlabel("Feature 1") ax1.set_ylabel("Feature 2") ax2.scatter( X_source[:, 0], X_source[:, 1], c=y_source, cmap="tab10", vmax=10, alpha=0.1, ) ax2.scatter( X_target[:, 0], X_target[:, 1], c=y_target, cmap="tab10", vmax=10, alpha=0.5, ) ax2.set_title("Target data") ax2.set_xlabel("Feature 1") ax2.set_ylabel("Feature 2") plt.show()
for shift in [ "covariate_shift", "target_shift", "concept_drift", "subspace", ]: plot_shifted_dataset(shift)
Total running time of the script: (0 minutes 0.598 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4