A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://qrisp.eu/reference/Algorithms/../../_modules/qrisp/algorithms/shor/shors_algorithm.html below:

qrisp.algorithms.shor.shors_algorithm — documentation

"""
********************************************************************************
* Copyright (c) 2025 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************
"""

import numpy as np
from sympy import continued_fraction_convergents, continued_fraction_iterator, Rational

from qrisp.interface import QiskitBackend
from qrisp.alg_primitives.arithmetic.modular_arithmetic import find_optimal_m, modinv
from qrisp.alg_primitives import QFT
from qrisp import QuantumModulus, QuantumFloat, h, control

depths = []
cnot_count = []
qubits = []


def find_optimal_a(N):
    n = int(np.ceil(np.log2(N)))
    proposals = []

    # Search through the first O(1) possibilities to find a good a
    for a in range(2, min(100, N - 1)):
        # We only append non-trivial proposals
        if np.gcd(a, N) == 1:
            proposals.append(a)

    cost_dic = {}
    for a in proposals:
        m_values = []
        for k in range(2 * n + 1):
            inpl_multiplier = (a ** (2**k)) % N

            if inpl_multiplier == 1:
                continue

            # find_optimal_m is a function that determines the lowest possible
            # Montgomery shift for a given number. The higher the montgomery shift,
            # the more qubits and the more effort is needed.
            m_values.append(find_optimal_m(inpl_multiplier, N))
            m_values.append(find_optimal_m(modinv((-inpl_multiplier) % N, N), N))

        cost_dic[a] = sum(m_values) + max(m_values) * 1e-5

    proposals.sort(key=lambda a: cost_dic[a])

    optimal_a = proposals[0]

    m_values = []

    for k in range(2 * n + 1):
        inpl_multiplier = ((optimal_a) ** (2**k)) % N

        if inpl_multiplier == 1:
            continue

        m_values.append(find_optimal_m(inpl_multiplier, N))

    return proposals


def find_order(a, N, inpl_adder=None, mes_kwargs={}):
    qg = QuantumModulus(N, inpl_adder)
    qg[:] = 1
    qpe_res = QuantumFloat(2 * qg.size + 1, exponent=-(2 * qg.size + 1))
    h(qpe_res)
    for i in range(len(qpe_res)):
        with control(qpe_res[i]):
            qg *= a
            a = (a * a) % N
    QFT(qpe_res, inv=True, inpl_adder=inpl_adder)

    mes_res = qpe_res.get_measurement(**mes_kwargs)

    return extract_order(mes_res, a, N)


def extract_order(mes_res, a, N):

    collected_r_values = []

    approximations = list(mes_res.keys())

    try:
        approximations.remove(0)
    except ValueError:
        pass

    while True:

        r_values = get_r_values(approximations.pop(0))

        for r in r_values:
            if (a**r) % N == 1:
                return r

        collected_r_values.append(r_values)
        from itertools import product

        for comb in product(*collected_r_values):
            r = np.lcm.reduce(comb)
            if (a**r) % N == 1:
                return r


def get_r_values(approx):
    rationals = continued_fraction_convergents(
        continued_fraction_iterator(Rational(approx))
    )
    return [rat.q for rat in rationals if 1 < rat.q]



[docs]
def shors_alg(N, inpl_adder=None, mes_kwargs={}):
    """
    Performs `Shor's factorization algorithm <https://arxiv.org/abs/quant-ph/9508027>`_ on a given integer N.
    The adder used for factorization can be customized. To learn more about this feature, please read :ref:`QuantumModulus`

    Parameters
    ----------
    N : integer
        The integer to be factored.
    inpl_adder : callable, optional
        A function that performs in-place addition. The default is None.
    mes_kwargs : dict, optional
        A dictionary of keyword arguments for :meth:`get_measurement <qrisp.QuantumVariable.get_measurement>`. This especially allows you to specify an execution backend. The default is {}.

    Returns
    -------
    res : integer
        A factor of N.

    Examples
    --------

    We factor 65:

    >>> from qrisp.shor import shors_alg
    >>> shors_alg(65)
    5

    """
    if not N % 2:
        return 2

    a_proposals = find_optimal_a(N)

    for a in a_proposals:

        K = np.gcd(a, N)

        if K != 1:
            res = K
            break

        r = find_order(a, N, inpl_adder, mes_kwargs)

        if r % 2:
            continue

        g = int(np.gcd(a ** (r // 2) + 1, N))

        if g not in [N, 1]:
            res = g
            break
    return res


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4