torch.export
AOTInductor Tutorial for Python runtime (Beta)#
Created On: Aug 23, 2024 | Last Updated: Jan 24, 2025 | Last Verified: Nov 05, 2024
Author: Ankith Gunapal, Bin Bao, Angela Yi
Warning
torch._inductor.aoti_compile_and_package
and torch._inductor.aoti_load_package
are in Beta status and are subject to backwards compatibility breaking changes. This tutorial provides an example of how to use these APIs for model deployment using Python runtime.
It has been shown previously how AOTInductor can be used to do Ahead-of-Time compilation of PyTorch exported models by creating an artifact that can be run in a non-Python environment. In this tutorial, you will learn an end-to-end example of how to use AOTInductor for Python runtime.
Contents
PyTorch 2.6 or later
Basic understanding of torch.export
and AOTInductor
Complete the AOTInductor: Ahead-Of-Time Compilation for Torch.Export-ed Models tutorial
How to use AOTInductor for Python runtime.
How to use torch._inductor.aoti_compile_and_package()
along with torch.export.export()
to generate a compiled artifact
How to load and run the artifact in a Python runtime using torch._export.aot_load()
.
When to you use AOTInductor with a Python runtime
We will use the TorchVision pretrained ResNet18
model as an example.
The first step is to export the model to a graph representation using torch.export.export()
. To learn more about using this function, you can check out the docs or the tutorial.
Once we have exported the PyTorch model and obtained an ExportedProgram
, we can apply torch._inductor.aoti_compile_and_package()
to AOTInductor to compile the program to a specified device, and save the generated contents into a “.pt2” artifact.
Note
This API supports the same available options that torch.compile()
has, such as mode
and max_autotune
(for those who want to enable CUDA graphs and leverage Triton based matrix multiplications and convolutions)
import os import torch import torch._inductor from torchvision.models import ResNet18_Weights, resnet18 model = resnet18(weights=ResNet18_Weights.DEFAULT) model.eval() with torch.inference_mode(): inductor_configs = {} if torch.cuda.is_available(): device = "cuda" inductor_configs["max_autotune"] = True else: device = "cpu" model = model.to(device=device) example_inputs = (torch.randn(2, 3, 224, 224, device=device),) exported_program = torch.export.export( model, example_inputs, ) path = torch._inductor.aoti_compile_and_package( exported_program, package_path=os.path.join(os.getcwd(), "resnet18.pt2"), inductor_configs=inductor_configs )
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth 0%| | 0.00/44.7M [00:00<?, ?B/s] 68%|██████▊ | 30.5M/44.7M [00:00<00:00, 319MB/s] 100%|██████████| 44.7M/44.7M [00:00<00:00, 346MB/s] /usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_fx.py:282: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance. AUTOTUNE convolution(2x3x224x224, 64x3x7x7) strides: [150528, 1, 672, 3], [147, 1, 21, 3] dtypes: torch.float32, torch.float32 convolution 0.0850 ms 100.0% triton_convolution2d_0 0.1106 ms 76.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_4 0.1311 ms 64.8% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_3 0.1956 ms 43.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_5 0.2417 ms 35.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_2 0.2970 ms 28.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8 triton_convolution2d_1 0.3850 ms 22.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 SingleProcess AUTOTUNE benchmarking takes 0.6516 seconds and 0.0003 seconds precompiling for 7 choices AUTOTUNE convolution(2x64x56x56, 64x64x3x3) strides: [200704, 1, 3584, 64], [576, 1, 192, 64] dtypes: torch.float32, torch.float32 triton_convolution2d_11 0.0379 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_10 0.0481 ms 78.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_9 0.0512 ms 74.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_6 0.0522 ms 72.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_7 0.0584 ms 64.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_12 0.0635 ms 59.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 convolution 0.0870 ms 43.5% triton_convolution2d_8 0.1208 ms 31.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.1653 seconds and 0.0004 seconds precompiling for 8 choices AUTOTUNE convolution(2x64x56x56, 128x64x3x3) strides: [200704, 1, 3584, 64], [576, 1, 192, 64] dtypes: torch.float32, torch.float32 triton_convolution2d_38 0.0420 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_39 0.0532 ms 78.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_34 0.0645 ms 65.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_37 0.0645 ms 65.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_40 0.0645 ms 65.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_35 0.0676 ms 62.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 convolution 0.0686 ms 61.2% triton_convolution2d_36 0.1126 ms 37.3% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.1585 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE convolution(2x128x28x28, 128x128x3x3) strides: [100352, 1, 3584, 128], [1152, 1, 384, 128] dtypes: torch.float32, torch.float32 convolution 0.0451 ms 100.0% triton_convolution2d_45 0.0481 ms 93.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_46 0.0727 ms 62.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_41 0.0881 ms 51.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_42 0.1054 ms 42.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_47 0.1147 ms 39.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_44 0.1249 ms 36.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_43 0.2284 ms 19.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.1680 seconds and 0.0003 seconds precompiling for 8 choices AUTOTUNE convolution(2x64x56x56, 128x64x1x1) strides: [200704, 1, 3584, 64], [64, 1, 1, 1] dtypes: torch.float32, torch.float32 triton_convolution2d_52 0.0092 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_48 0.0113 ms 81.8% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_49 0.0133 ms 69.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_54 0.0133 ms 69.2% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 triton_convolution2d_50 0.0195 ms 47.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8 triton_convolution2d_51 0.0195 ms 47.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 triton_convolution2d_53 0.0215 ms 42.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 convolution 0.0767 ms 12.0% SingleProcess AUTOTUNE benchmarking takes 0.1168 seconds and 0.0003 seconds precompiling for 8 choices AUTOTUNE convolution(2x128x28x28, 256x128x3x3) strides: [100352, 1, 3584, 128], [1152, 1, 384, 128] dtypes: torch.float32, torch.float32 convolution 0.0461 ms 100.0% triton_convolution2d_73 0.0492 ms 93.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_70 0.1147 ms 40.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_75 0.1198 ms 38.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_72 0.1208 ms 38.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_74 0.1270 ms 36.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_69 0.1352 ms 34.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_71 0.1772 ms 26.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.1745 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE convolution(2x256x14x14, 256x256x3x3) strides: [50176, 1, 3584, 256], [2304, 1, 768, 256] dtypes: torch.float32, torch.float32 convolution 0.0522 ms 100.0% triton_convolution2d_80 0.0901 ms 58.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_77 0.2028 ms 25.8% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_78 0.2130 ms 24.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8 triton_convolution2d_76 0.2284 ms 22.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_82 0.2314 ms 22.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_79 0.2417 ms 21.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_81 0.2427 ms 21.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.2271 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE convolution(2x128x28x28, 256x128x1x1) strides: [100352, 1, 3584, 128], [128, 1, 1, 1] dtypes: torch.float32, torch.float32 triton_convolution2d_87 0.0092 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_84 0.0174 ms 52.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 convolution 0.0184 ms 50.0% triton_convolution2d_83 0.0184 ms 50.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_86 0.0184 ms 50.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 triton_convolution2d_89 0.0195 ms 47.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 triton_convolution2d_88 0.0205 ms 45.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 triton_convolution2d_85 0.0256 ms 36.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.0954 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE convolution(2x256x14x14, 512x256x3x3) strides: [50176, 1, 3584, 256], [2304, 1, 768, 256] dtypes: torch.float32, torch.float32 convolution 0.0604 ms 100.0% triton_convolution2d_108 0.0942 ms 64.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_106 0.2068 ms 29.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8 triton_convolution2d_105 0.2294 ms 26.3% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_110 0.2304 ms 26.2% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_107 0.2345 ms 25.8% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_109 0.2489 ms 24.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_104 0.2632 ms 23.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4 SingleProcess AUTOTUNE benchmarking takes 0.2279 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE convolution(2x512x7x7, 512x512x3x3) strides: [25088, 1, 3584, 512], [4608, 1, 1536, 512] dtypes: torch.float32, torch.float32 convolution 0.0829 ms 100.0% triton_convolution2d_115 0.1802 ms 46.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_113 0.2150 ms 38.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8 triton_convolution2d_117 0.2796 ms 29.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_112 0.3471 ms 23.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_111 0.4577 ms 18.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4 triton_convolution2d_114 0.4741 ms 17.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 triton_convolution2d_116 0.4782 ms 17.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.2429 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE convolution(2x256x14x14, 512x256x1x1) strides: [50176, 1, 3584, 256], [256, 1, 1, 1] dtypes: torch.float32, torch.float32 triton_convolution2d_122 0.0143 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_120 0.0266 ms 53.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8 triton_convolution2d_119 0.0276 ms 51.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_118 0.0297 ms 48.3% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4 triton_convolution2d_121 0.0307 ms 46.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 triton_convolution2d_124 0.0307 ms 46.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 convolution 0.0317 ms 45.2% triton_convolution2d_123 0.0338 ms 42.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8 SingleProcess AUTOTUNE benchmarking takes 0.0975 seconds and 0.0002 seconds precompiling for 8 choices AUTOTUNE addmm(2x1000, 2x512, 512x1000) strides: [0, 1], [512, 1], [1, 512] dtypes: torch.float32, torch.float32, torch.float32 addmm 0.0154 ms 100.0% triton_mm_142 0.0174 ms 88.2% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=2 triton_mm_143 0.0195 ms 78.9% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=2 triton_mm_140 0.0215 ms 71.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=2, num_warps=2 triton_mm_146 0.0297 ms 51.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=3, num_warps=4 triton_mm_152 0.0297 ms 51.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=3, num_warps=4 triton_mm_153 0.0297 ms 51.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=4, num_warps=4 triton_mm_141 0.0307 ms 50.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=4 triton_mm_139 0.0317 ms 48.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=16, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=1, num_warps=2 triton_mm_145 0.0369 ms 41.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=2, num_warps=4 SingleProcess AUTOTUNE benchmarking takes 0.3790 seconds and 0.0002 seconds precompiling for 18 choices
The result of aoti_compile_and_package()
is an artifact “resnet18.pt2” which can be loaded and executed in Python and C++.
The artifact itself contains a bunch of AOTInductor generated code, such as a generated C++ runner file, a shared library compiled from the C++ file, and CUDA binary files, aka cubin files, if optimizing for CUDA.
Structure-wise, the artifact is a structured .zip
file, with the following specification:
We can use the following command to inspect the artifact contents:
Archive: resnet18.pt2 Length Date Time Name --------- ---------- ----- ---- 1 01-08-2025 16:40 version 3 01-08-2025 16:40 archive_format 10088 01-08-2025 16:40 data/aotinductor/model/cagzt6akdaczvxwtbvqe34otfe5jlorktbqlojbzqjqvbfsjlge4.cubin 17160 01-08-2025 16:40 data/aotinductor/model/c6oytfjmt5w4c7onvtm6fray7clirxt7q5xjbwx3hdydclmwoujz.cubin 16616 01-08-2025 16:40 data/aotinductor/model/c7ydp7nocyz323hij4tmlf2kcedmwlyg6r57gaqzcsy3huneamu6.cubin 17776 01-08-2025 16:40 data/aotinductor/model/cyqdf46ordevqhiddvpdpp3uzwatfbzdpl3auj2nx23uxvplnne2.cubin 10856 01-08-2025 16:40 data/aotinductor/model/cpzfebfgrusqslui7fxsuoo4tvwulmrxirc5tmrpa4mvrbdno7kn.cubin 14608 01-08-2025 16:40 data/aotinductor/model/c5ukeoz5wmaszd7vczdz2qhtt6n7tdbl3b6wuy4rb2se24fjwfoy.cubin 11376 01-08-2025 16:40 data/aotinductor/model/csu3nstcp56tsjfycygaqsewpu64l5s6zavvz7537cm4s4cv2k3r.cubin 10984 01-08-2025 16:40 data/aotinductor/model/cp76lez4glmgq7gedf2u25zvvv6rksv5lav4q22dibd2zicbgwj3.cubin 14736 01-08-2025 16:40 data/aotinductor/model/c2bb5p6tnwz4elgujqelsrp3unvkgsyiv7xqxmpvuxcm4jfl7pc2.cubin 11376 01-08-2025 16:40 data/aotinductor/model/c6eopmb2b4ngodwsayae4r5q6ni3jlfogfbdk3ypg56tgpzhubfy.cubin 11624 01-08-2025 16:40 data/aotinductor/model/chmwe6lvoekzfowdbiizitm3haiiuad5kdm6sd2m6mv6dkn2zk32.cubin 15632 01-08-2025 16:40 data/aotinductor/model/c3jop5g344hj3ztsu4qm6ibxyaaerlhkzh2e6emak23rxfje6jam.cubin 25472 01-08-2025 16:40 data/aotinductor/model/chaiixybeiuuitm2nmqnxzijzwgnn2n7uuss4qmsupgblfh3h5hk.cubin 139389 01-08-2025 16:40 data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t.cpp 27 01-08-2025 16:40 data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t_metadata.json 47195424 01-08-2025 16:40 data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t.so --------- ------- 47523148 18 filesModel Inference in Python#
To load and run the artifact in Python, we can use torch._inductor.aoti_load_package()
.
There are mainly two reasons why one would use AOTInductor with a Python Runtime:
torch._inductor.aoti_compile_and_package
generates a singular serialized artifact. This is useful for model versioning for deployments and tracking model performance over time.
With torch.compile()
being a JIT compiler, there is a warmup cost associated with the first compilation. Your deployment needs to account for the compilation time taken for the first inference. With AOTInductor, the compilation is done ahead of time using torch.export.export
and torch._inductor.aoti_compile_and_package
. At deployment time, after loading the model, running inference does not have any additional cost.
The section below shows the speedup achieved with AOTInductor for first inference
We define a utility function timed
to measure the time taken for inference
import time def timed(fn): # Returns the result of running `fn()` and the time it took for `fn()` to run, # in seconds. We use CUDA events and synchronization for accurate # measurement on CUDA enabled devices. if torch.cuda.is_available(): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() else: start = time.time() result = fn() if torch.cuda.is_available(): end.record() torch.cuda.synchronize() else: end = time.time() # Measure time taken to execute the function in miliseconds if torch.cuda.is_available(): duration = start.elapsed_time(end) else: duration = (end - start) * 1000 return result, duration
Lets measure the time for first inference using AOTInductor
Time taken for first inference for AOTInductor is 3.36 ms
Lets measure the time for first inference using torch.compile
Time taken for first inference for torch.compile is 3386.27 ms
We see that there is a drastic speedup in first inference time using AOTInductor compared to torch.compile
In this recipe, we have learned how to effectively use the AOTInductor for Python runtime by compiling and loading a pretrained ResNet18
model. This process demonstrates the practical application of generating a compiled artifact and running it within a Python environment. We also looked at the advantage of using AOTInductor in model deployments, with regards to speed up in first inference time.
Total running time of the script: (0 minutes 26.674 seconds)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4